Streetscore -- Predicting the Perceived Safety of One Million Streetscapes
Author(s)
Raskar, Ramesh; Naik, Nikhil Deepak; Philipoom, Jade D.; Hidalgo Ramaciotti, Cesar A.
DownloadRaskar_streetscore_paper.pdf (7.784Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Social science literature has shown a strong connection between the visual appearance of a city's neighborhoods and the behavior and health of its citizens. Yet, this research is limited by the lack of methods that can be used to quantify the appearance of streetscapes across cities or at high enough spatial resolutions. In this paper, we describe 'Streetscore', a scene understanding algorithm that predicts the perceived safety of a streetscape, using training data from an online survey with contributions from more than 7000 participants. We first study the predictive power of commonly used image features using support vector regression, finding that Geometric Texton and Color Histograms along with GIST are the best performers when it comes to predict the perceived safety of a streetscape. Using Streetscore, we create high resolution maps of perceived safety for 21 cities in the Northeast and Midwest of the United States at a resolution of 200 images/square mile, scoring ~1 million images from Google Streetview. These datasets should be useful for urban planners, economists and social scientists looking to explain the social and economic consequences of urban perception.
Date issued
2014-06Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Media Laboratory; Program in Media Arts and Sciences (Massachusetts Institute of Technology)Journal
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Naik, Nikhil, Jade Philipoom, Ramesh Raskar, and Cesar Hidalgo. “Streetscore -- Predicting the Perceived Safety of One Million Streetscapes.” 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (June 2014).
Version: Author's final manuscript
ISBN
978-1-4799-4308-1