Show simple item record

dc.contributor.authorBorodin, Alexei
dc.contributor.authorCorwin, Ivan
dc.date.accessioned2015-01-13T15:28:10Z
dc.date.available2015-01-13T15:28:10Z
dc.date.issued2013-03
dc.date.submitted2012-11
dc.identifier.issn0178-8051
dc.identifier.issn1432-2064
dc.identifier.urihttp://hdl.handle.net/1721.1/92818
dc.description.abstractMacdonald processes are probability measures on sequences of partitions defined in terms of nonnegative specializations of the Macdonald symmetric functions and two Macdonald parameters q,t ∈ [0,1). We prove several results about these processes, which include the following. (1) We explicitly evaluate expectations of a rich family of observables for these processes. (2) In the case t = 0, we find a Fredholm determinant formula for a q-Laplace transform of the distribution of the last part of the Macdonald-random partition. (3) We introduce Markov dynamics that preserve the class of Macdonald processes and lead to new “integrable” 2d and 1d interacting particle systems. (4) In a large time limit transition, and as q goes to 1, the particles of these systems crystallize on a lattice, and fluctuations around the lattice converge to O’Connell’s Whittaker process that describe semi-discrete Brownian directed polymers. (5) This yields a Fredholm determinant for the Laplace transform of the polymer partition function, and taking its asymptotics we prove KPZ universality for the polymer (free energy fluctuation exponent 1/3 and Tracy-Widom GUE limit law). (6) Under intermediate disorder scaling, we recover the Laplace transform of the solution of the KPZ equation with narrow wedge initial data. (7) We provide contour integral formulas for a wide array of polymer moments. (8) This results in a new ansatz for solving quantum many body systems such as the delta Bose gas.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1056390)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Partnerships for International Research (Grant OISE-07-30136)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1208998)en_US
dc.description.sponsorshipClay Mathematics Institute (Research Fellowship)en_US
dc.description.sponsorshipMicrosoft Research (Schramm Memorial Fellowship)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00440-013-0482-3en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleMacdonald processesen_US
dc.typeArticleen_US
dc.identifier.citationBorodin, Alexei, and Ivan Corwin. “Macdonald Processes.” Probability Theory and Related Fields 158, no. 1–2 (March 30, 2013): 225–400.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorBorodin, Alexeien_US
dc.contributor.mitauthorCorwin, Ivanen_US
dc.relation.journalProbability Theory and Related Fieldsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsBorodin, Alexei; Corwin, Ivanen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2913-5238
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record