MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sub-pixel Layout for Super-Resolution with Images in the Octic Group

Author(s)
Shi, Boxin; Zhao, Hang; Ben-Ezra, Moshe; Yeung, Sai-Kit; Fernandez-Cull, Christy; Shepard, R. Hamilton; Barsi, Christopher; Raskar, Ramesh; ... Show more Show less
Thumbnail
DownloadRaskar_Sub-pixel layout.pdf (5.733Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper presents a novel super-resolution framework by exploring the properties of non-conventional pixel layouts and shapes. We show that recording multiple images, transformed in the octic group, with a sensor of asymmetric sub-pixel layout increases the spatial sampling compared to a conventional sensor with a rectilinear grid of pixels and hence increases the image resolution. We further prove a theoretical bound for achieving well-posed super-resolution with a designated magnification factor w.r.t. the number and distribution of sub-pixels. We also propose strategies for selecting good sub-pixel layouts and effective super-resolution algorithms for our setup. The experimental results validate the proposed theory and solution, which have the potential to guide the future CCD layout design with super-resolution functionality.
Description
13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I
Date issued
2014
URI
http://hdl.handle.net/1721.1/92840
Department
Lincoln Laboratory; Massachusetts Institute of Technology. Media Laboratory; Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Journal
Computer Vision – ECCV 2014
Publisher
Springer-Verlag Berlin Heidelberg
Citation
Shi, Boxin, Hang Zhao, Moshe Ben-Ezra, Sai-Kit Yeung, Christy Fernandez-Cull, R. Hamilton Shepard, Christopher Barsi, and Ramesh Raskar. “Sub-Pixel Layout for Super-Resolution with Images in the Octic Group.” Computer Vision--ECCV 2014. D. Fleet et al. (Eds.). LNCS Vol. 8689. Berlin, Heidelberg: Springer, 2014. pp. 250-264.
Version: Author's final manuscript
ISBN
978-3-319-10589-5
978-3-319-10590-1
ISSN
0302-9743
1611-3349

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.