Show simple item record

dc.contributor.authorEtingof, Pavel I.
dc.contributor.authorSchedler, Travis
dc.date.accessioned2015-01-14T14:58:28Z
dc.date.available2015-01-14T14:58:28Z
dc.date.issued2013-03
dc.date.submitted2011-09
dc.identifier.issn1073-7928
dc.identifier.issn1687-0247
dc.identifier.urihttp://hdl.handle.net/1721.1/92850
dc.description.abstractWe compute the space of Poisson traces on symmetric powers of affine symplectic varieties. In the case of symplectic vector spaces, we also consider the quotient by the diagonal translation action, which includes the quotient singularities T*C[superscript n-1]/S[subscript n] associated with the type A Weyl group S[subscript n] and its reflection representation C[superscript n-1]. We also compute the full structure of the natural D-module, previously defined by the authors, whose solution space over algebraic distributions identifies with the space of Poisson traces. As a consequence, we deduce bounds on the numbers of finite-dimensional irreducible representations and prime ideals of quantizations of these varieties. Finally, motivated by these results, we pose conjectures on symplectic resolutions, and give related examples of the natural D-module. In an appendix, the second author computes the Poisson traces and associated D-module for the quotients T*C[superscript n]/D[subscript n] associated with type D Weyl groups. In a second appendix, the same author provides a direct proof of one of the main theorems.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1000113)en_US
dc.language.isoen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/imrn/rnt031en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titlePoisson Traces for Symmetric Powers of Symplectic Varietiesen_US
dc.typeArticleen_US
dc.identifier.citationEtingof, P., and T. Schedler. “Poisson Traces for Symmetric Powers of Symplectic Varieties.” International Mathematics Research Notices (March 21, 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorEtingof, Pavel I.en_US
dc.relation.journalInternational Mathematics Research Noticesen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsEtingof, P.; Schedler, T.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0710-1416
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record