MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improved Algorithms for Vertex Cover with Hard Capacities on Multigraphs and Hypergraphs

Author(s)
Cheung, Wang Chi; Goemans, Michel X.; Wong, Sam Chiu-Wai
Thumbnail
DownloadGoemans_Improved algoithms.pdf (403.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In this paper, we consider the minimum unweighted Vertex Cover problem with Hard Capacity constraints (VCHC) on multigraphs and hypergraphs. Given a graph, the objective of VCHC is to find a smallest multiset of vertices that cover all edges, under the constraints that each vertex can only cover a limited number of incident edges, and the number of available copies of each vertex is bounded. This problem generalizes the classical unweighted vertex cover problem. Here we restrict our attention to unweighted instances, since the weighted version of VCHC is as hard as the set cover problem, as shown by Chuzhoy and Naor (FOCS 2002). We obtain improved approximation algorithms for VCHC on multigraphs and hypergraphs. This problem has first been studied by Saha and Khuller (ICALP 2012). They proposed a 38-approximation for multigraphs, and a max {6 f, 65}-approximation for hypergraphs, where f is the size of the largest hyperedge. In this paper, we significantly improve these approximation ratios to 1 + 2/√3 < 2.155 and 2 f respectively. In the case of multigraphs, our approximation ratio is very close to the longstanding bound of 2 for the classical vertex cover problem. Our algorithms consist of a two-step process, each based on rounding an appropriate linear program. In particular, for multigraphs, the analysis in the second step relies on identifying a matching structure within any extreme point solution. Furthermore, we consider the partial VCHC problem in which one only needs to cover all but ℓ edges. We propose a generic reduction from partial VCHC on f-hypergraphs to VCHC on (f + 1)-hypergraphs, with a small loss in the approximation factor. In particular, we present a (2f + 2)(1 + ∊)-approximation algorithm for partial VCHC on f-hypergraphs.
Date issued
2014-01
URI
http://hdl.handle.net/1721.1/92853
Department
Massachusetts Institute of Technology. Department of Mathematics; Sloan School of Management
Journal
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
Publisher
Society for Industrial and Applied Mathematics
Citation
Cheung, Wang Chi, Michel X. Goemans, and Sam Chiu-Wai Wong. “Improved Algorithms for Vertex Cover with Hard Capacities on Multigraphs and Hypergraphs.” Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (December 18, 2013): 1714–1726. © 2014 the Society for Industrial and Applied Mathematics
Version: Final published version
ISBN
978-1-61197-338-9
978-1-61197-340-2

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.