Show simple item record

dc.contributor.authorDevos, Matt
dc.contributor.authorFox, Jacob
dc.contributor.authorMcDonald, Jessica
dc.contributor.authorMohar, Bojan
dc.contributor.authorScheide, Diego
dc.contributor.authorDvorak, Zdenek
dc.date.accessioned2015-01-14T16:40:07Z
dc.date.available2015-01-14T16:40:07Z
dc.date.issued2014-01
dc.date.submitted2011-01
dc.identifier.issn0209-9683
dc.identifier.issn1439-6912
dc.identifier.urihttp://hdl.handle.net/1721.1/92854
dc.description.abstractAn immersion of a graph H into a graph G is a one-to-one mapping f: V (H) → V (G) and a collection of edge-disjoint paths in G, one for each edge of H, such that the path P [subscript uv] corresponding to edge uv has endpoints f(u) and f(v). The immersion is strong if the paths P [subscript uv] are internally disjoint from f(V (H)). It is proved that for every positive integer Ht, every simple graph of minimum degree at least 200t contains a strong immersion of the complete graph K [subscript t]. For dense graphs one can say even more. If the graph has order n and has 2cn [superscript 2] edges, then there is a strong immersion of the complete graph on at least c [superscript 2] n vertices in G in which each path P [subscript uv] is of length 2. As an application of these results, we resolve a problem raised by Paul Seymour by proving that the line graph of every simple graph with average degree d has a clique minor of order at least cd [superscript 3/2], where c>0 is an absolute constant. For small values of t, 1≤t≤7, every simple graph of minimum degree at least t−1 contains an immersion of K [subscript t] (Lescure and Meyniel [13], DeVos et al. [6]). We provide a general class of examples showing that this does not hold when t is large.en_US
dc.description.sponsorshipSimons Foundation (Fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1069197)en_US
dc.description.sponsorshipNEC Corporation (MIT Award)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00493-014-2806-zen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleA minimum degree condition forcing complete graph immersionen_US
dc.typeArticleen_US
dc.identifier.citationDevos, Matt, Zdenek Dvorak, Jacob Fox, Jessica McDonald, Bojan Mohar, and Diego Scheide. “A Minimum Degree Condition Forcing Complete Graph Immersion.” Combinatorica 34, no. 3 (February 8, 2014): 279–298.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorFox, Jacoben_US
dc.relation.journalCombinatoricaen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsDevos, Matt; Dvorak, Zdenek; Fox, Jacob; McDonald, Jessica; Mohar, Bojan; Scheide, Diegoen_US
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record