MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Representation Theory in Complex Rank, I

Author(s)
Etingof, Pavel I.
Thumbnail
DownloadEtingof_Representation theory.pdf (287.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
P. Deligne defined interpolations of the tensor category of representations of the symmetric group S [subscript n] to complex values of n. Namely, he defined tensor categories Rep(S [subscript t]) for any complex t. This construction was generalized by F. Knop to the case of wreath products of S[subscript n] with a finite group. Generalizing these results, we propose a method of interpolating representation categories of various algebras containing S [subscript n] (such as degenerate affine Hecke algebras, symplectic reflection algebras, rational Cherednik algebras, etc.) to complex values of n. We also define the group algebra of S [subscript n] for complex n, study its properties, and propose a Schur-Weyl duality for Rep(S [subscript t]).
Date issued
2014-03
URI
http://hdl.handle.net/1721.1/92855
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Transformation Groups
Publisher
Springer-Verlag
Citation
Etingof, Pavel. “Representation Theory in Complex Rank, I.” Transformation Groups 19, no. 2 (March 25, 2014): 359–381.
Version: Author's final manuscript
ISSN
1083-4362
1531-586X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.