MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cycle packing

Author(s)
Conlon, David; Fox, Jacob; Sudakov, Benny
Thumbnail
DownloadFox_Cycle packing.pdf (221.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
In the 1960s, Erdős and Gallai conjectured that the edge set of every graph on n vertices can be partitioned into O(n) cycles and edges. They observed that one can easily get an O(nlogn) upper bound by repeatedly removing the edges of the longest cycle. We make the first progress on this problem, showing that O(nloglogn) cycles and edges suffice. We also prove the Erdős-Gallai conjecture for random graphs and for graphs with linear minimum degree.
Date issued
2014-12
URI
http://hdl.handle.net/1721.1/92862
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Random Structures & Algorithms
Publisher
Wiley-VCH Verlag GmbH & Co.
Citation
Conlon, David, Jacob Fox, and Benny Sudakov. “Cycle Packing.” Random Struct. Alg. 45, no. 4 (October 16, 2014): 608–626.
Version: Author's final manuscript
ISSN
10429832

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.