MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The beta-Wishart ensemble

Author(s)
Dubbs, Alexander Joseph; Edelman, Alan; Koev, Plamen; Venkataramana, Praveen
Thumbnail
DownloadEdelman_beta-wishart.pdf (642.6Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We introduce a “broken-arrow” matrix model for the β-Wishart ensemble, which improves on the traditional bidiagonal model by generalizing to non-identity covariance parameters. We prove that its joint eigenvalue density involves the correct hypergeometric function of two matrix arguments, and a continuous parameter β > 0. If we choose β = 1, 2, 4, we recover the classical Wishart ensembles of general covariance over the reals, complexes, and quaternions. Jack polynomials are often defined as the eigenfunctions of the Laplace-Beltrami operator. We prove that Jack polynomials are in addition eigenfunctions of an integral operator defined as an average over a β-dependent measure on the sphere. When combined with an identity due to Stanley, we derive a definition of Jack polynomials. An efficient numerical algorithm is also presented for simulations. The algorithm makes use of secular equation software for broken arrow matrices currently unavailable in the popular technical computing languages. The simulations are matched against the cdfs for the extreme eigenvalues. The techniques here suggest that arrow and broken arrow matrices can play an important role in theoretical and computational random matrix theory including the study of corners processes. We provide a number of simulations illustrating the extreme eigenvalue distributions that are likely to be useful for applications. We also compare the n → ∞ answer for all β with the free-probability prediction.
Date issued
2013-08
URI
http://hdl.handle.net/1721.1/92863
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Mathematical Physics
Publisher
American Institute of Physics (AIP)
Citation
Dubbs, Alexander, Alan Edelman, Plamen Koev, and Praveen Venkataramana. “The Beta-Wishart Ensemble.” Journal of Mathematical Physics 54, no. 8 (2013): 083507. © 2013 AIP.
Version: Final published version
ISSN
00222488

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.