Balanced Fiber Bundles and GKM Theory
Author(s)
Guillemin, Victor W.; Sabatini, Silvia; Zara, Catalin
DownloadGuillemin_Balanced fiber.pdf (201.5Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Let T be a torus and B a compact T-manifold. Goresky et al. show in [3] that if B is (what was subsequently called) a GKM manifold, then there exists a simple combinatorial description of the equivariant cohomology ring H*[over]T(B) as a subring of H*[over]T(B[superscript 2]). In this paper, we prove an analog of this result for T-equivariant fiber bundles: we show that if M is a T-manifold and π:M→B a fiber bundle for which π intertwines the two T-actions, there is a simple combinatorial description of H*[over]T(M) as a subring of H*[over]T(π[superscript -1](B[superscript T])). Using this result, we obtain fiber bundle analogs of results of Guillemin et al. on GKM theory for homogeneous spaces.
Date issued
2012-07Department
Massachusetts Institute of Technology. Department of MathematicsJournal
International Mathematics Research Notices
Publisher
Oxford University Press
Citation
Guillemin, V., S. Sabatini, and C. Zara. “Balanced Fiber Bundles and GKM Theory.” International Mathematics Research Notices (July 9, 2012). vol. 2013 (17): 3886-3910.
Version: Original manuscript
ISSN
1073-7928
1687-0247