MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic construction and natural-language description of nonparametric regression models

Author(s)
Lloyd, James Robert; Duvenaud, David; Grosse, Roger Baker; Tenenbaum, Joshua B.; Ghahramani, Zoubin
Thumbnail
DownloadTenenbaum_Automatic Construction.pdf (1.479Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper presents the beginnings of an automatic statistician, focusing on regression problems. Our system explores an open-ended space of statistical mod els to discover a good explanation of a data set, and then produces a detailed report with figures and natural-language text. Our approach treats unknown regression functions non- parametrically using Gaussian processes, which has two important consequences. First, Gaussian processes can model functions in terms of high-level properties (e.g. smoothness, trends, periodicity, changepoints). Taken together with the compositional structure of our language of models this allows us to automatically describe functions in simple terms. Second, the use of flexible nonparametric models and a rich language for composing them in an open-ended manner also results in state-of-the-art extrapolation performance evaluated over 13 real time series data sets from various domains
Date issued
2015-01-14
URI
http://hdl.handle.net/1721.1/92869
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Citation
Lloyd, James Robert, David Duenaud, Roger Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani. "Automatic Construction and Natural-language Description of Nonparametric Regression Models." pp.1-5.
Version: Original manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.