MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Internal DLA and the Gaussian free field

Author(s)
Jerison, David S.; Levine, Lionel; Sheffield, Scott Roger
Thumbnail
DownloadJerison_Internal dla.pdf (620.6Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
In previous works, we showed that the internal diffusion-limited aggregation (DLA) cluster on Z[superscript d] with t particles is almost surely spherical up to a maximal error of O(logt) if d=2 and O(logt√) if d≥3. This paper addresses average error: in a certain sense, the average deviation of internal DLA from its mean shape is of constant order when d=2 and of order r[superscript 1−d/2] (for a radius r cluster) in general. Appropriately normalized, the fluctuations (taken over time and space) scale to a variant of the Gaussian free field.
Date issued
2014-02
URI
http://hdl.handle.net/1721.1/92870
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Duke Mathematical Journal
Publisher
Duke University Press
Citation
Jerison, David, Lionel Levine, and Scott Sheffield. “Internal DLA and the Gaussian Free Field.” Duke Mathematical Journal 163, no. 2 (February 2014): 267–308.
Version: Original manuscript
ISSN
0012-7094
1547-7398

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.