MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Erdős distinct distances problem in the plane

Author(s)
Guth, Lawrence; Katz, Nets Hawk
Thumbnail
DownloadGuth_On the Erdos.pdf (314.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
In this paper, we prove that a set of N points in R2 has at least cNlogN distinct distances, thus obtaining the sharp exponent in a problem of Erdős. We follow the setup of Elekes and Sharir which, in the spirit of the Erlangen program, allows us to study the problem in the group of rigid motions of the plane. This converts the problem to one of point-line incidences in space. We introduce two new ideas in our proof. In order to control points where many lines are incident, we create a cell decomposition using the polynomial ham sandwich theorem. This creates a dichotomy: either most of the points are in the interiors of the cells, in which case we immediately get sharp results or, alternatively, the points lie on the walls of the cells, in which case they are in the zero-set of a polynomial of suprisingly low degree, and we may apply the algebraic method. In order to control points incident to only two lines, we use the flecnode polynomial of the Rev. George Salmon to conclude that most of the lines lie on a ruled surface. Then we use the geometry of ruled surfaces to complete the proof.
Date issued
2015-01
URI
http://hdl.handle.net/1721.1/92873
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Annals of Mathematics
Publisher
Princeton University Press
Citation
Guth, Larry, and Nets Katz. “On the Erdős Distinct Distances Problem in the Plane.” Ann. Math. (January 1, 2015): 155–190.
Version: Original manuscript
ISSN
0003-486X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.