Show simple item record

dc.contributor.authorDuvenaud, David
dc.contributor.authorLloyd, James Robert
dc.contributor.authorGrosse, Roger Baker
dc.contributor.authorTenenbaum, Joshua B.
dc.contributor.authorGhahramani, Zoubin
dc.date.accessioned2015-01-15T19:04:48Z
dc.date.available2015-01-15T19:04:48Z
dc.date.issued2013-06
dc.identifier.urihttp://hdl.handle.net/1721.1/92896
dc.description.abstractDespite its importance, choosing the structural form of the kernel in nonparametric regression remains a black art. We define a space of kernel structures which are built compositionally by adding and multiplying a small number of base kernels. We present a method for searching over this space of structures which mirrors the scientific discovery process. The learned structures can often decompose functions into interpretable components and enable long-range extrapolation on time-series datasets. Our structure search method outperforms many widely used kernels and kernel combination methods on a variety of prediction tasks.en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canadaen_US
dc.description.sponsorshipEngineering and Physical Sciences Research Council (Grant EP/I036575/1)en_US
dc.description.sponsorshipGoogle (Firm)en_US
dc.language.isoen_US
dc.publisherInternational Machine Learning Societyen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleStructure discovery in nonparametric regression through compositional kernel searchen_US
dc.typeArticleen_US
dc.identifier.citationDuvenaud, David, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani. "Structure discovery in nonparametric regression through compositional kernel search." 30th International Conference on Machine Learning (June 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorGrosse, Roger Bakeren_US
dc.contributor.mitauthorTenenbaum, Joshua B.en_US
dc.relation.journalProceedings of the 30th International Conference on Machine Learningen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsDuvenaud, David; Lloyd, James Robert; Grosse, Roger; Tenenbaum, Joshua B.; Ghahramani, Zoubinen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1925-2035
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record