Show simple item record

dc.contributor.authorElashvili, A. G.
dc.contributor.authorVinberg, E. B.
dc.contributor.authorKac, Victor
dc.date.accessioned2015-01-15T19:21:49Z
dc.date.available2015-01-15T19:21:49Z
dc.date.issued2013-02
dc.date.submitted2012-05
dc.identifier.issn1083-4362
dc.identifier.issn1531-586X
dc.identifier.urihttp://hdl.handle.net/1721.1/92900
dc.description.abstractWe develop a theory of cyclic elements in semisimple Lie algebras. This notion was introduced by Kostant, who associated a cyclic element with the principal nilpotent and proved that it is regular semisimple. In particular, we classfiy all nilpotents giving rise to semisimple and regular semisimple cyclic elements. As an application, we obtain an explicit construction of all regular elements in Weyl groups.en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00031-013-9214-0en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleCyclic elements in semisimple lie algebrasen_US
dc.typeArticleen_US
dc.identifier.citationElashvili, A. G., V. G. Kac, and E. B. Vinberg. “Cyclic Elements in Semisimple Lie Algebras.” Transformation Groups 18, no. 1 (February 3, 2013): 97–130.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorKac, Victoren_US
dc.relation.journalTransformation Groupsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsElashvili, A. G.; Kac, V. G.; Vinberg, E. B.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2860-7811
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record