Show simple item record

dc.contributor.authorDe Sole, Alberto
dc.contributor.authorKac, Victor
dc.date.accessioned2015-01-15T20:16:57Z
dc.date.available2015-01-15T20:16:57Z
dc.date.issued2013-03
dc.date.submitted2012-08
dc.identifier.issn0289-2316
dc.identifier.issn1861-3624
dc.identifier.urihttp://hdl.handle.net/1721.1/92912
dc.description.abstractIt is well known that the validity of the so called Lenard–Magri scheme of integrability of a bi-Hamiltonian PDE can be established if one has some precise information on the corresponding 1st variational Poisson cohomology for one of the two Hamiltonian operators. In the first part of the paper we explain how to introduce various cohomology complexes, including Lie superalgebra and Poisson cohomology complexes, and basic and reduced Lie conformal algebra and Poisson vertex algebra cohomology complexes, by making use of the corresponding universal Lie superalgebra or Lie conformal superalgebra. The most relevant are certain subcomplexes of the basic and reduced Poisson vertex algebra cohomology complexes, which we identify (non-canonically) with the generalized de Rham complex and the generalized variational complex. In the second part of the paper we compute the cohomology of the generalized de Rham complex, and, via a detailed study of the long exact sequence, we compute the cohomology of the generalized variational complex for any quasiconstant coefficient Hamiltonian operator with invertible leading coefficient. For the latter we use some differential linear algebra developed in the Appendix.en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipERC (Advanced Grant)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11537-013-1124-3en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleThe variational Poisson cohomologyen_US
dc.typeArticleen_US
dc.identifier.citationDe Sole, Alberto, and Victor G. Kac. “The Variational Poisson Cohomology.” Japanese Journal of Mathematics 8, no. 1 (March 2013): 1–145.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorKac, Victoren_US
dc.relation.journalJapanese Journal of Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDe Sole, Alberto; Kac, Victor G.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2860-7811
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record