Show simple item record

dc.contributor.authorWong, Lok Sang Lawson
dc.contributor.authorKaelbling, Leslie P.
dc.contributor.authorLozano-Perez, Tomas
dc.date.accessioned2015-01-16T15:12:44Z
dc.date.available2015-01-16T15:12:44Z
dc.date.issued2015-01-16
dc.identifier.issn0278-3649
dc.identifier.issn1741-3176
dc.identifier.urihttp://hdl.handle.net/1721.1/92929
dc.description.abstractAutonomous mobile-manipulation robots need to sense and interact with objects to accomplish high-level tasks such as preparing meals and searching for objects. To achieve such tasks, robots need semantic world models, defined as object-based representations of the world involving task-level attributes. In this work, we address the problem of estimating world models from semantic perception modules that provide noisy observations of attributes. Because attribute detections are sparse, ambiguous, and are aggregated across different viewpoints, it is unclear which attribute measurements are produced by the same object, so data association issues are prevalent. We present novel clustering-based approaches to this problem, which are more efficient and require less severe approximations compared to existing tracking-based approaches. These approaches are applied to data containing object type-and-pose detections from multiple viewpoints, and demonstrate comparable quality using a fraction of the computation time.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF Grant No. 1117325)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (ONR MURI grant N00014-09-1-1051)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (AFOSR grant FA2386-10-1-4135)en_US
dc.description.sponsorshipSingapore. Ministry of Education (Grant to the the Singapore-MIT International Design Center)en_US
dc.language.isoen_US
dc.publisherSage Publicationsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1177/0278364914559754
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceWongen_US
dc.titleData Association for Semantic World Modeling from Partial Viewsen_US
dc.typeArticleen_US
dc.identifier.citationWong, L.S. Lawson, Leslie Pack Kaelbling, and Tomas Lozano-Perez. "Data Association for Semantic World Modeling from Partial Views." International Journal of Robotics Research, June 2015; 34 (7) : 1064–1082.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverWong, Lok Sang Lawsonen_US
dc.contributor.mitauthorWong, Lok Sang Lawsonen_US
dc.contributor.mitauthorKaelbling, Leslie P.en_US
dc.contributor.mitauthorLozano-Perez, Tomasen_US
dc.relation.journalInternational Journal of Robotics Researchen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWong, Lawson L.S.; Kaelbling, Leslie Pack; Lozano-Perez, Tomasen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9944-7587
dc.identifier.orcidhttps://orcid.org/0000-0002-8657-2450
dc.identifier.orcidhttps://orcid.org/0000-0001-6054-7145
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record