MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

NuSTAR STUDY OF HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF PWN G21.5–0.9

Author(s)
Nynka, Melania; Hailey, Charles J.; Reynolds, Stephen P.; An, Hongjun; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Gotthelf, Eric V.; Grefenstette, Brian W.; Harrison, Fiona A.; Krivonos, Roman A.; Madsen, Kristin K.; Mori, Kaya; Perez, Kerstin; Stern, Daniel; Wik, Daniel R.; Zhang, William W.; Zoglauer, Andreas; Baganoff, Frederick K; ... Show more Show less
Thumbnail
DownloadNynka-2014-NuSTAR STUDY OF HARD.pdf (1.737Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present NuSTAR high-energy X-ray observations of the pulsar wind nebula (PWN)/supernova remnant G21.5–0.9. We detect integrated emission from the nebula up to ~40 keV, and resolve individual spatial features over a broad X-ray band for the first time. The morphology seen by NuSTAR agrees well with that seen by XMM-Newton and Chandra below 10 keV. At high energies, NuSTAR clearly detects non-thermal emission up to ~20 keV that extends along the eastern and northern rim of the supernova shell. The broadband images clearly demonstrate that X-ray emission from the North Spur and Eastern Limb results predominantly from non-thermal processes. We detect a break in the spatially integrated X-ray spectrum at ~9 keV that cannot be reproduced by current spectral energy distribution models, implying either a more complex electron injection spectrum or an additional process such as diffusion compared to what has been considered in previous work. We use spatially resolved maps to derive an energy-dependent cooling length scale, L(E) E[superscript m] with m = –0.21 ± 0.01. We find this to be inconsistent with the model for the morphological evolution with energy described by Kennel & Coroniti. This value, along with the observed steepening in power-law index between radio and X-ray, can be quantitatively explained as an energy-loss spectral break in the simple scaling model of Reynolds, assuming particle advection dominates over diffusion. This interpretation requires a substantial departure from spherical magnetohydrodynamic, magnetic-flux-conserving outflow, most plausibly in the form of turbulent magnetic-field amplification.
Date issued
2014-07
URI
http://hdl.handle.net/1721.1/92935
Department
MIT Kavli Institute for Astrophysics and Space Research
Journal
The Astrophysical Journal
Publisher
IOP Publishing
Citation
Nynka, Melania, Charles J. Hailey, Stephen P. Reynolds, Hongjun An, Frederick K. Baganoff, Steven E. Boggs, Finn E. Christensen, et al. “NuSTAR STUDY OF HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF PWN G21.5–0.9.” The Astrophysical Journal 789, no. 1 (June 17, 2014): 72. © 2014 The American Astronomical Society
Version: Final published version
ISSN
0004-637X
1538-4357

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.