MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

OBLIQUITIES OF KEPLER STARS: COMPARISON OF SINGLE- AND MULTIPLE-TRANSIT SYSTEMS

Author(s)
Morton, Timothy D.; Winn, Joshua Nathan
Thumbnail
DownloadMorton-2014-OBLIQUITIES OF KEPLE.pdf (849.7Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The stellar obliquity of a transiting planetary system can be constrained by combining measurements of the star's rotation period, radius, and projected rotational velocity. Here, we present a hierarchical Bayesian technique for recovering the obliquity distribution of a population of transiting planetary systems and apply it to a sample of 70 Kepler objects of interest. With ≈95% confidence, we find that the obliquities of stars with only a single detected transiting planet are systematically larger than those with multiple detected transiting planets. This suggests that a substantial fraction of Kepler's single-transiting systems represent dynamically hotter, less orderly systems than the "pancake-flat" multiple-transiting systems.
Date issued
2014-11
URI
http://hdl.handle.net/1721.1/92942
Department
Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space Research
Journal
The Astrophysical Journal
Publisher
IOP Publishing
Citation
Morton, Timothy D., and Joshua N. Winn. “OBLIQUITIES OF KEPLER STARS: COMPARISON OF SINGLE- AND MULTIPLE-TRANSIT SYSTEMS.” The Astrophysical Journal 796, no. 1 (November 4, 2014): 47. © 2014 The American Astronomical Society
Version: Final published version
ISSN
1538-4357
0004-637X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.