Show simple item record

dc.contributor.authorLehman, Li-wei H.
dc.contributor.authorAdams, Ryan P.
dc.contributor.authorMoody, George B.
dc.contributor.authorMalhotra, Atul
dc.contributor.authorMark, Roger Greenwood
dc.contributor.authorNemati, Shamim, 1980-
dc.date.accessioned2015-01-16T19:34:59Z
dc.date.available2015-01-16T19:34:59Z
dc.date.issued2013-07
dc.identifier.isbn978-1-4577-0216-7
dc.identifier.otherINSPEC Accession Number: 13812605
dc.identifier.urihttp://hdl.handle.net/1721.1/92949
dc.description.abstractPhysiologic systems generate complex dynamics in their output signals that reflect the changing state of the underlying control systems. In this work, we used a switching vector autoregressive (switching VAR) framework to systematically learn and identify a collection of vital sign dynamics, which can possibly be recurrent within the same patient and shared across the entire cohort. We show that these dynamical behaviors can be used to characterize and elucidate the progression of patients' states of health over time. Using the mean arterial blood pressure time series of 337 ICU patients during the first 24 hours of their ICU stays, we demonstrated that the learned dynamics from as early as the first 8 hours of patients' ICU stays can achieve similar hospital mortality prediction performance as the well-known SAPS-I acuity scores, suggesting that the discovered latent dynamics structure may yield more timely insights into the progression of a patient's state of health than the traditional snapshot-based acuity scores.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant R01-EB001659)en_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (grant U01-EB008577)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH R01 HL090897)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (AHA 0840159N)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (DARPA Young Faculty Award N66001-12-1-4219)en_US
dc.description.sponsorshipJames S. McDonnell Foundation (Postdoctoral grant)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/EMBC.2013.6611187en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleTracking progression of patient state of health in critical care using inferred shared dynamics in physiological time seriesen_US
dc.typeArticleen_US
dc.identifier.citationLehman, Li-wei H., Shamim Nemati, Ryan P. Adams, George Moody, Atul Malhotra, and Roger G. Mark. “Tracking Progression of Patient State of Health in Critical Care Using Inferred Shared Dynamics in Physiological Time Series.” 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (July 2013), Osaka, Japan, 3-7 July, 2013.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. School of Engineeringen_US
dc.contributor.mitauthorLehman, Li-wei H.en_US
dc.contributor.mitauthorMoody, George B.en_US
dc.contributor.mitauthorMark, Roger Greenwooden_US
dc.relation.journal2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.identifier.pmid24111374
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsLehman, Li-wei H.; Nemati, Shamim; Adams, Ryan P.; Moody, George; Malhotra, Atul; Mark, Roger G.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6318-2978
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record