| dc.contributor.author | Lusztig, George | |
| dc.contributor.author | Vogan, David A. | |
| dc.date.accessioned | 2015-01-20T18:31:37Z | |
| dc.date.available | 2015-01-20T18:31:37Z | |
| dc.date.issued | 2014-03 | |
| dc.date.submitted | 2013-06 | |
| dc.identifier.issn | 0012-7094 | |
| dc.identifier.issn | 1547-7398 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/93076 | |
| dc.description.abstract | Let (G,K) be a symmetric pair over an algebraically closed field of characteristic different from 2, and let σ be an automorphism with square 1 of G preserving K. In this paper we consider the set of pairs (O,L) where O is a σ-stable K-orbit on the flag manifold of G and L is an irreducible K-equivariant local system on O which is “fixed” by σ. Given two such pairs (O,L), (O',L'), with O' in the closure [bar over O] of O, the multiplicity space of L' in a cohomology sheaf of the intersection cohomology of [bar over O] with coefficients in L (restricted to O') carries an involution induced by σ, and we are interested in computing the dimensions of its +1 and −1 eigenspaces. We show that this computation can be done in terms of a certain module structure over a quasisplit Hecke algebra on a space spanned by the pairs (O,L) as above. | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS-0758262) | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS-0967272) | en_US |
| dc.language.iso | en_US | |
| dc.publisher | Duke University Press | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1215/00127094-2644684 | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
| dc.source | arXiv | en_US |
| dc.title | Quasisplit Hecke algebras and symmetric spaces | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Lusztig, George, and David A. Vogan Jr. “Quasisplit Hecke Algebras and Symmetric Spaces.” Duke Mathematical Journal 163, no. 5 (April 2014): 983–1034. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.contributor.mitauthor | Vogan, David A. | en_US |
| dc.contributor.mitauthor | Lusztig, George | en_US |
| dc.relation.journal | Duke Mathematical Journal | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dspace.orderedauthors | Lusztig, George; Vogan Jr., David A. | en_US |
| dc.identifier.orcid | https://orcid.org/0000-0002-9816-2395 | |
| dc.identifier.orcid | https://orcid.org/0000-0001-9414-6892 | |
| mit.license | OPEN_ACCESS_POLICY | en_US |
| mit.metadata.status | Complete | |