Show simple item record

dc.contributor.authorLusztig, George
dc.date.accessioned2015-01-20T18:58:54Z
dc.date.available2015-01-20T18:58:54Z
dc.date.issued2012-09
dc.date.submitted2012-05
dc.identifier.issn1088-4165
dc.identifier.urihttp://hdl.handle.net/1721.1/93080
dc.description.abstractLet G be an affine algebraic group over an algebraically closed field whose identity component G[superscript 0] is reductive. Let W be the Weyl group of G and let D be a connected component of G whose image in [G over G[superscript 0]] is unipotent. In this paper we define a map from the set of “twisted conjugacy classes” in W to the set of unipotent G[superscript 0]-conjugacy classes in D generalizing an earlier construction which applied when G is connected.en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.language.isoen_US
dc.publisherAmerican Mathematical Society (AMS)en_US
dc.relation.isversionofhttp://www.ams.org/journals/ert/2012-16-12/S1088-4165-2012-00422-8/S1088-4165-2012-00422-8.pdfen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Mathematical Societyen_US
dc.titleFrom conjugacy classes in the weyl group to unipotent classes, IIIen_US
dc.typeArticleen_US
dc.identifier.citationLusztig, G. “From Conjugacy Classes in the Weyl Group to Unipotent Classes, III.” Representation Theory 16 (2012): 450–488. © 2012 American Mathematical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorLusztig, Georgeen_US
dc.relation.journalRepresentation Theoryen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLusztig, G.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9414-6892
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record