Show simple item record

dc.contributor.authorVasy, András
dc.contributor.authorBarreto, Antônio Sá
dc.contributor.authorMelrose, Richard B.
dc.date.accessioned2015-01-21T16:38:06Z
dc.date.available2015-01-21T16:38:06Z
dc.date.issued2014-02
dc.date.submitted2012-01
dc.identifier.issn0360-5302
dc.identifier.issn1532-4133
dc.identifier.urihttp://hdl.handle.net/1721.1/93087
dc.description.abstractSolutions to the wave equation on de Sitter-Schwarzschild space with smooth initial data on a Cauchy surface are shown to decay exponentially to a constant at temporal infinity, with corresponding uniform decay on the appropriately compactified space.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0408993)en_US
dc.language.isoen_US
dc.publisherTaylor & Francisen_US
dc.relation.isversionofhttp://dx.doi.org/10.1080/03605302.2013.866958en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleAsymptotics of Solutions of the Wave Equation on de Sitter-Schwarzschild Spaceen_US
dc.typeArticleen_US
dc.identifier.citationMelrose, Richard, Antônio Sá Barreto, and András Vasy. “Asymptotics of Solutions of the Wave Equation on de Sitter-Schwarzschild Space.” Communications in Partial Differential Equations 39.3 (2014): 512–529.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorMelrose, Richard B.en_US
dc.relation.journalCommunications in Partial Differential Equationsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsMelrose, Richard; Barreto, Antônio Sá; Vasy, Andrásen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1494-8228
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record