Show simple item record

dc.contributor.authorSteiner, James F.
dc.contributor.authorMcClintock, Jeffrey E.
dc.contributor.authorOrosz, Jerome A.
dc.contributor.authorBuxton, Michelle
dc.contributor.authorBailyn, Charles D.
dc.contributor.authorKara, Erin
dc.contributor.authorRemillard, Ronald A
dc.date.accessioned2015-01-22T17:31:23Z
dc.date.available2015-01-22T17:31:23Z
dc.date.issued2014-02
dc.date.submitted2013-12
dc.identifier.issn0004-637X
dc.identifier.issn1538-4357
dc.identifier.urihttp://hdl.handle.net/1721.1/93133
dc.description.abstractThe X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, ten-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the All-Sky Monitor and Proportional Counter Array detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ≈2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light, accretion luminosity from the outer disk inferred from the time-lagged X-ray emission, and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mass accretion rate; this in turn implies that the viscosity parameter α decreases with increasing luminosity. Finally, we find that X-ray heating is a strong function of X-ray luminosity below ≈50% of the Eddington limit, while above this limit X-ray heating is heavily suppressed. We ascribe this behavior to the strong dependence of the flaring in the disk upon X-ray luminosity, concluding that for luminosities above ≈50% of Eddington, the star lies fully in the shadow of the disk.en_US
dc.language.isoen_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/0004-637X/783/2/101en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Astronomical Societyen_US
dc.titleMODELING THE OPTICAL-X-RAY ACCRETION LAG IN LMC X-3: INSIGHTS INTO BLACK-HOLE ACCRETION PHYSICSen_US
dc.typeArticleen_US
dc.identifier.citationSteiner, James F., Jeffrey E. McClintock, Jerome A. Orosz, Michelle M. Buxton, Charles D. Bailyn, Ronald A. Remillard, and Erin Kara. “MODELING THE OPTICAL-X-RAY ACCRETION LAG IN LMC X-3: INSIGHTS INTO BLACK-HOLE ACCRETION PHYSICS.” The Astrophysical Journal 783, no. 2 (February 20, 2014): 101. © 2014 The American Astronomical Societyen_US
dc.contributor.departmentMIT Kavli Institute for Astrophysics and Space Researchen_US
dc.contributor.mitauthorRemillard, Ronald Alanen_US
dc.relation.journalThe Astrophysical Journalen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSteiner, James F.; McClintock, Jeffrey E.; Orosz, Jerome A.; Buxton, Michelle M.; Bailyn, Charles D.; Remillard, Ronald A.; Kara, Erinen_US
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record