Show simple item record

dc.contributor.authorPoonen, Bjorn
dc.contributor.authorStoll, Michael
dc.date.accessioned2015-01-22T19:12:32Z
dc.date.available2015-01-22T19:12:32Z
dc.date.issued2014-11
dc.date.submitted2014-04
dc.identifier.issn0003-486X
dc.identifier.urihttp://hdl.handle.net/1721.1/93149
dc.description.abstractConsider the smooth projective models C of curves y [superscript 2] = f(x) with f(x) ∈Z[x] monic and separable of degree 2g+1. We prove that for g ≥ 3, a positive fraction of these have only one rational point, the point at infinity. We prove a lower bound on this fraction that tends to 1 as g→∞. Finally, we show that C(Q) can be algorithmically computed for such a fraction of the curves. The method can be summarized as follows: using p-adic analysis and an idea of McCallum, we develop a reformulation of Chabauty’s method that shows that certain computable conditions imply #C(Q)=1; on the other hand, using further p-adic analysis, the theory of arithmetic surfaces, a new result on torsion points on hyperelliptic curves, and crucially the Bhargava–Gross theorems on the average number and equidistribution of nonzero 2-Selmer group elements, we prove that these conditions are often satisfied for p=2.en_US
dc.description.sponsorshipJohn Simon Guggenheim Memorial Foundationen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMS-1069236)en_US
dc.language.isoen_US
dc.publisherPrinceton University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.4007/annals.2014.180.3.7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleMost odd degree hyperelliptic curves have only one rational pointen_US
dc.typeArticleen_US
dc.identifier.citationPoonen, Bjorn, and Michael Stoll. “Most Odd Degree Hyperelliptic Curves Have Only One Rational Point.” Ann. Math. (November 1, 2014): 1137–1166.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorPoonen, Bjornen_US
dc.relation.journalAnnals of Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsPoonen, Bjorn; Stoll, Michaelen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8593-2792
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record