Show simple item record

dc.contributor.authorKronheimer, P. B.
dc.contributor.authorMrowka, Tomasz S.
dc.date.accessioned2015-01-22T21:15:24Z
dc.date.available2015-01-22T21:15:24Z
dc.date.issued2013-04
dc.date.submitted2012-08
dc.identifier.issn1753-8416
dc.identifier.issn1753-8424
dc.identifier.urihttp://hdl.handle.net/1721.1/93159
dc.description.abstractUsing a version of instanton homology, an integer invariant s[superscript ♯](K) is defined for knots K in S[superscript 3]. This invariant is shown to be equal to Rasmussen's s-invariant. While Rasmussen's invariant provides a lower bound for 2 g(Σ) for any surface Σ in B[superscript 4] with boundary K, it is shown in this paper that s[superscript ♯](K) (and therefore s(K)) similarly bounds the genus of such a surface Σ in any homotopy 4-ball.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0805841)en_US
dc.language.isoen_US
dc.publisherOxford University Press - London Mathematical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1112/jtopol/jtt008en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleGauge theory and Rasmussen's invarianten_US
dc.typeArticleen_US
dc.identifier.citationKronheimer, P. B., and T. S. Mrowka. “Gauge Theory and Rasmussen’s Invariant.” Journal of Topology 6.3 (April 7, 2013): 659–674.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorMrowka, Tomasz S.en_US
dc.relation.journalJournal of Topologyen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsKronheimer, P. B.; Mrowka, T. S.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9520-6535
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record