Show simple item record

dc.contributor.authorLenert, Andrej
dc.contributor.authorBierman, David Matthew
dc.contributor.authorSoljacic, Marin
dc.contributor.authorWang, Evelyn
dc.contributor.authorCelanovic, Ivan L.
dc.contributor.authorNam, Young Suk
dc.contributor.authorChan, Walker R
dc.date.accessioned2015-01-23T17:52:50Z
dc.date.available2015-01-23T17:52:50Z
dc.date.issued2014-01
dc.date.submitted2013-09
dc.identifier.issn1748-3387
dc.identifier.issn1748-3395
dc.identifier.urihttp://hdl.handle.net/1721.1/93174
dc.description.abstractThe most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron–hole pairs in a semiconductor, or solar–thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small heat engines make the solar–thermal approach best suited for utility-scale power plants. There is, therefore, an increasing need for hybrid technologies for solar power generation. By converting sunlight into thermal emission tuned to energies directly above the photovoltaic bandgap using a hot absorber–emitter, solar thermophotovoltaics promise to leverage the benefits of both approaches: high efficiency, by harnessing the entire solar spectrum; scalability and compactness, because of their solid-state nature; and dispatchablility, owing to the ability to store energy using thermal or chemical means. However, efficient collection of sunlight in the absorber and spectral control in the emitter are particularly challenging at high operating temperatures. This drawback has limited previous experimental demonstrations of this approach to conversion efficiencies around or below 1% (refs 9, 10, 11). Here, we report on a full solar thermophotovoltaic device, which, thanks to the nanophotonic properties of the absorber–emitter surface, reaches experimental efficiencies of 3.2%. The device integrates a multiwalled carbon nanotube absorber and a one-dimensional Si/SiO[subscript 2] photonic-crystal emitter on the same substrate, with the absorber–emitter areas optimized to tune the energy balance of the device. Our device is planar and compact and could become a viable option for high-performance solar thermophotovoltaic energy conversion.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences (DE-FG02-09ER46577)en_US
dc.description.sponsorshipMartin Family Society of Fellows for Sustainabilityen_US
dc.description.sponsorshipMIT Energy Initiativeen_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowshipen_US
dc.description.sponsorshipKorea (South). Ministry of Science, ICT and Future Planning (National Research Foundation of Korea. Basic Science Research Program 2012R1A1A1014845)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nnano.2013.286en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceLenerten_US
dc.titleA nanophotonic solar thermophotovoltaic deviceen_US
dc.typeArticleen_US
dc.identifier.citationLenert, Andrej, David M. Bierman, Youngsuk Nam, Walker R. Chan, Ivan Celanovic, Marin Soljacic, and Evelyn N. Wang. “A Nanophotonic Solar Thermophotovoltaic Device.” Nature Nanotechnology 9, no. 2 (January 19, 2014): 126–130.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Soldier Nanotechnologiesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.approverWang, Evelyn N.en_US
dc.contributor.mitauthorLenert, Andrejen_US
dc.contributor.mitauthorBierman, David Matthewen_US
dc.contributor.mitauthorNam, Youngsuken_US
dc.contributor.mitauthorWang, Evelyn N.en_US
dc.contributor.mitauthorChan, Walker R.en_US
dc.contributor.mitauthorSoljacic, Marinen_US
dc.contributor.mitauthorCelanovic, Ivanen_US
dc.relation.journalNature Nanotechnologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLenert, Andrej; Bierman, David M.; Nam, Youngsuk; Chan, Walker R.; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9897-2670
dc.identifier.orcidhttps://orcid.org/0000-0002-7184-5831
dc.identifier.orcidhttps://orcid.org/0000-0001-7232-4467
dc.identifier.orcidhttps://orcid.org/0000-0001-7045-1200
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record