MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extending Self-Maps to Projective Space over Finite Fields

Author(s)
Poonen, Bjorn
Thumbnail
DownloadPoonen_Extending self.pdf (178.3Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Using the closed point sieve, we extend to finite fields the following theorem proved by A. Bhatnagar and L. Szpiro over infinite fields: if X is a closed subscheme of P[superscript n] over a field, and φ: X → X satisfies φ∗O[subscript X](1) [~ over _] O[subscript X](d) for some d ≥ 2, then there exists r ≥ 1 such that φ[superscript r] extends to a morphism P[superscript n] → P[superscript n].
Date issued
2013
URI
http://hdl.handle.net/1721.1/93177
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Documentica Mathematica
Publisher
European Math Society
Citation
Poonen, Bjorn. "Extending Self-Maps to Projective Space over Finite Fields." Documenta Mathematica 18 (2013), 1039-1044.
Version: Author's final manuscript
ISSN
1431-0635
1431-0643

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.