Show simple item record

dc.contributor.authorHammond, Alan
dc.contributor.authorSheffield, Scott Roger
dc.date.accessioned2015-01-23T18:30:33Z
dc.date.available2015-01-23T18:30:33Z
dc.date.issued2012-12
dc.date.submitted2010-04
dc.identifier.issn0178-8051
dc.identifier.issn1432-2064
dc.identifier.urihttp://hdl.handle.net/1721.1/93178
dc.description.abstractWe introduce a natural family of random walks S[subscript n] on Z that scale to fractional Brownian motion. The increments X[subscript n] := S[subscript n] − S[subscript n]−1 ∈ {±1} have the property that given {X[subscript k] : k < n}, the conditional law of X[subscript n] is that of X[subscript n−k[subscript n]] , where k[subscript n] is sampled independently from a fixed law μ on the positive integers. When μ has a roughly power law decay (precisely, when μ lies in the domain of attraction of an α-stable subordinator, for 0 < α < 1/2) the walks scale to fractional Brownian motion with Hurst parameter α + 1/2. The walks are easy to simulate and their increments satisfy an FKG inequality. In a sense we describe, they are the natural “fractional” analogues of simple random walk on Z.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0403182)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0645585)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant OISE-07-30136)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00440-012-0468-6en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titlePower law Polya’s urn and fractional Brownian motionen_US
dc.typeArticleen_US
dc.identifier.citationHammond, Alan, and Scott Sheffield. “Power Law Polya’s Urn and Fractional Brownian Motion.” Probability Theory and Related Fields 157, no. 3–4 (December 11, 2012): 691–719.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorSheffield, Scott Rogeren_US
dc.relation.journalProbability Theory and Related Fieldsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsHammond, Alan; Sheffield, Scotten_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5951-4933
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record