Pivotal estimation via square-root Lasso in nonparametric regression
Author(s)
Belloni, Alexandre; Wang, Lie; Chernozhukov, Victor V.
DownloadWang_Pivotal estimation.pdf (399.8Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
We propose a self-tuning √Lasso method that simultaneously resolves three important practical problems in high-dimensional regression analysis, namely it handles the unknown scale, heteroscedasticity and (drastic) non-Gaussianity of the noise. In addition, our analysis allows for badly behaved designs, for example, perfectly collinear regressors, and generates sharp bounds even in extreme cases, such as the infinite variance case and the noiseless case, in contrast to Lasso. We establish various nonasymptotic bounds for√Lasso including prediction norm rate and sparsity. Our analysis is based on new impact factors that are tailored for bounding prediction norm. In order to cover heteroscedastic non-Gaussian noise, we rely on moderate deviation theory for self-normalized sums to achieve Gaussian-like results under weak conditions. Moreover, we derive bounds on the performance of ordinary least square (ols) applied to the model selected by √Lasso accounting for possible misspecification of the selected model. Under mild conditions, the rate of convergence of ols post √Lasso is as good as √Lasso’s rate. As an application, we consider the use of √Lasso and ols post √Lasso as estimators of nuisance parameters in a generic semiparametric problem (nonlinear moment condition or Z-problem), resulting in a construction of √n-consistent and asymptotically normal estimators of the main parameters.
Date issued
2014-04Department
Massachusetts Institute of Technology. Department of Economics; Massachusetts Institute of Technology. Department of MathematicsJournal
Annals of Statistics
Publisher
Institute of Mathematical Statistics
Citation
Belloni, Alexandre, Victor Chernozhukov, and Lie Wang. “Pivotal Estimation via Square-Root Lasso in Nonparametric Regression.” Ann. Statist. 42, no. 2 (April 2014): 757–788.
Version: Author's final manuscript
ISSN
0090-5364