MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pivotal estimation via square-root Lasso in nonparametric regression

Author(s)
Belloni, Alexandre; Wang, Lie; Chernozhukov, Victor V.
Thumbnail
DownloadWang_Pivotal estimation.pdf (399.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We propose a self-tuning √Lasso method that simultaneously resolves three important practical problems in high-dimensional regression analysis, namely it handles the unknown scale, heteroscedasticity and (drastic) non-Gaussianity of the noise. In addition, our analysis allows for badly behaved designs, for example, perfectly collinear regressors, and generates sharp bounds even in extreme cases, such as the infinite variance case and the noiseless case, in contrast to Lasso. We establish various nonasymptotic bounds for√Lasso including prediction norm rate and sparsity. Our analysis is based on new impact factors that are tailored for bounding prediction norm. In order to cover heteroscedastic non-Gaussian noise, we rely on moderate deviation theory for self-normalized sums to achieve Gaussian-like results under weak conditions. Moreover, we derive bounds on the performance of ordinary least square (ols) applied to the model selected by √Lasso accounting for possible misspecification of the selected model. Under mild conditions, the rate of convergence of ols post √Lasso is as good as √Lasso’s rate. As an application, we consider the use of √Lasso and ols post √Lasso as estimators of nuisance parameters in a generic semiparametric problem (nonlinear moment condition or Z-problem), resulting in a construction of √n-consistent and asymptotically normal estimators of the main parameters.
Date issued
2014-04
URI
http://hdl.handle.net/1721.1/93187
Department
Massachusetts Institute of Technology. Department of Economics; Massachusetts Institute of Technology. Department of Mathematics
Journal
Annals of Statistics
Publisher
Institute of Mathematical Statistics
Citation
Belloni, Alexandre, Victor Chernozhukov, and Lie Wang. “Pivotal Estimation via Square-Root Lasso in Nonparametric Regression.” Ann. Statist. 42, no. 2 (April 2014): 757–788.
Version: Author's final manuscript
ISSN
0090-5364

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.