Show simple item record

dc.contributor.authorQuintana, Elisa V.
dc.contributor.authorRowe, Jason F.
dc.contributor.authorBarclay, Thomas
dc.contributor.authorHowell, Steve B.
dc.contributor.authorCiardi, David R.
dc.contributor.authorDemory, Brice-Olivier
dc.contributor.authorCaldwell, Douglas A.
dc.contributor.authorBorucki, William J.
dc.contributor.authorChristiansen, Jessie L.
dc.contributor.authorJenkins, Jon M.
dc.contributor.authorKlaus, Todd C.
dc.contributor.authorFulton, Benjamin J.
dc.contributor.authorMorris, Robert L.
dc.contributor.authorSanderfer, Dwight T.
dc.contributor.authorShporer, Avi
dc.contributor.authorSmith, Jeffrey C.
dc.contributor.authorStill, Martin
dc.contributor.authorThompson, Susan E.
dc.date.accessioned2015-01-29T18:27:30Z
dc.date.available2015-01-29T18:27:30Z
dc.date.issued2013-04
dc.date.submitted2012-09
dc.identifier.issn0004-637X
dc.identifier.issn1538-4357
dc.identifier.urihttp://hdl.handle.net/1721.1/93201
dc.description.abstractWe present high precision photometry of Kepler-41, a giant planet in a 1.86 day orbit around a G6V star that was recently confirmed through radial velocity measurements. We have developed a new method to confirm giant planets solely from the photometric light curve, and we apply this method herein to Kepler-41 to establish the validity of this technique. We generate a full phase photometric model by including the primary and secondary transits, ellipsoidal variations, Doppler beaming, and reflected/emitted light from the planet. Third light contamination scenarios that can mimic a planetary transit signal are simulated by injecting a full range of dilution values into the model, and we re-fit each diluted light curve model to the light curve. The resulting constraints on the maximum occultation depth and stellar density combined with stellar evolution models rules out stellar blends and provides a measurement of the planet's mass, size, and temperature. We expect about two dozen Kepler giant planets can be confirmed via this method.en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (Association of Universities for Research in Astronomy, Inc. Contract NAS-526555)en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration. Office of Space Science (Grant NNX09AF08G)en_US
dc.language.isoen_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/0004-637x/767/2/137en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Astronomical Societyen_US
dc.titleCONFIRMATION OF HOT JUPITER KEPLER-41b VIA PHASE CURVE ANALYSISen_US
dc.typeArticleen_US
dc.identifier.citationQuintana, Elisa V., Jason F. Rowe, Thomas Barclay, Steve B. Howell, David R. Ciardi, Brice-Olivier Demory, Douglas A. Caldwell, et al. “CONFIRMATION OF HOT JUPITER KEPLER-41b VIA PHASE CURVE ANALYSIS.” The Astrophysical Journal 767, no. 2 (April 5, 2013): 137. © 2013 The American Astronomical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.mitauthorDemory, Brice-Olivieren_US
dc.relation.journalAstrophysical Journalen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsQuintana, Elisa V.; Rowe, Jason F.; Barclay, Thomas; Howell, Steve B.; Ciardi, David R.; Demory, Brice-Olivier; Caldwell, Douglas A.; Borucki, William J.; Christiansen, Jessie L.; Jenkins, Jon M.; Klaus, Todd C.; Fulton, Benjamin J.; Morris, Robert L.; Sanderfer, Dwight T.; Shporer, Avi; Smith, Jeffrey C.; Still, Martin; Thompson, Susan E.en_US
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record