Show simple item record

dc.contributor.authorLittleton, J. Troy
dc.contributor.authorKummel, Daniel
dc.contributor.authorBaguley, Stephanie Wood
dc.contributor.authorColeman, Jeff
dc.contributor.authorRothman, James E.
dc.contributor.authorCho, Richard W.
dc.contributor.authorLi, Feng, 1968 Oct. 24-
dc.date.accessioned2015-02-05T18:57:18Z
dc.date.available2015-02-05T18:57:18Z
dc.date.issued2014-06
dc.date.submitted2014-04
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/93871
dc.description.abstractComplexin (Cpx) is a SNARE-binding protein that regulates neurotransmission by clamping spontaneous synaptic vesicle fusion in the absence of Ca[superscript 2+] influx while promoting evoked release in response to an action potential. Previous studies indicated Cpx may cross-link multiple SNARE complexes via a trans interaction to function as a fusion clamp. During Ca[superscript 2+] influx, Cpx is predicted to undergo a conformational switch and collapse onto a single SNARE complex in a cis-binding mode to activate vesicle release. To test this model in vivo, we performed structure–function studies of the Cpx protein in Drosophila. Using genetic rescue approaches with cpx mutants that disrupt SNARE cross-linking, we find that manipulations that are predicted to block formation of the trans SNARE array disrupt the clamping function of Cpx. Unexpectedly, these same mutants rescue action potential-triggered release, indicating trans–SNARE cross-linking by Cpx is not a prerequisite for triggering evoked fusion. In contrast, mutations that impair Cpx-mediated cis–SNARE interactions that are necessary for transition from an open to closed conformation fail to rescue evoked release defects in cpx mutants, although they clamp spontaneous release normally. Our in vivo genetic manipulations support several predictions made by the Cpx cross-linking model, but unexpected results suggest additional mechanisms are likely to exist that regulate Cpx’s effects on SNARE-mediated fusion. Our findings also indicate that the inhibitory and activating functions of Cpx are genetically separable, and can be mapped to distinct molecular mechanisms that differentially regulate the SNARE fusion machinery.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant NS064750)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant NS40296)en_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1409311111en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceNational Academy of Sciences (U.S.)en_US
dc.titleGenetic analysis of the Complexin trans-clamping model for cross-linking SNARE complexes in vivoen_US
dc.typeArticleen_US
dc.identifier.citationCho, Richard W., Daniel Kummel, Feng Li, Stephanie Wood Baguley, Jeff Coleman, James E. Rothman, and J. Troy Littleton. “Genetic Analysis of the Complexin Trans-Clamping Model for Cross-Linking SNARE Complexes in Vivo.” Proceedings of the National Academy of Sciences 111, no. 28 (June 30, 2014): 10317–10322.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.mitauthorLittleton, J. Troyen_US
dc.contributor.mitauthorCho, Richard Williamen_US
dc.relation.journalProceedings of the National Academy of Sciences of the United States of Americaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCho, Richard W.; Kummel, Daniel; Li, Feng; Baguley, Stephanie Wood; Coleman, Jeff; Rothman, James E.; Littleton, J. Troyen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5576-2887
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record