MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sparsity-Driven Synthetic Aperture Radar Imaging: Reconstruction, autofocusing, moving targets, and compressed sensing

Author(s)
Cetin, Mujdat; Stojanovic, Ivana; Onhon, Ozben; Varshney, Kush; Samadi, Sadegh; Karl, William Clem; Willsky, Alan S.; ... Show more Show less
Thumbnail
DownloadWillsky Cetin_spm-jul-2014_final_submitted.pdf (5.855Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This article presents a survey of recent research on sparsity-driven synthetic aperture radar (SAR) imaging. In particular, it reviews 1) the analysis and synthesis-based sparse signal representation formulations for SAR image formation together with the associated imaging results, 2) sparsity-based methods for wide-angle SAR imaging and anisotropy characterization, 3) sparsity-based methods for joint imaging and autofocusing from data with phase errors, 4) techniques for exploiting sparsity for SAR imaging of scenes containing moving objects, and 5) recent work on compressed sensing (CS)-based analysis and design of SAR sensing missions.
Date issued
2014-06
URI
http://hdl.handle.net/1721.1/93875
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Signal Processing Magazine
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Cetin, Mujdat, Ivana Stojanovic, Ozben Onhon, Kush Varshney, Sadegh Samadi, William Clem Karl, and Alan S. Willsky. “Sparsity-Driven Synthetic Aperture Radar Imaging: Reconstruction, Autofocusing, Moving Targets, and Compressed Sensing.” IEEE Signal Processing Magazine 31, no. 4 (July 2014): 27–40.
Version: Author's final manuscript
ISSN
1053-5888

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.