Show simple item record

dc.contributor.authorZhernenkov, Mikhail
dc.contributor.authorGill, Simerjeet
dc.contributor.authorStanic, Vesna
dc.contributor.authorDiMasi, Elaine
dc.contributor.authorKisslinger, Kim
dc.contributor.authorBaldwin, J. Kevin
dc.contributor.authorMisra, Amit
dc.contributor.authorEcker, Lynne
dc.contributor.authorDemkowicz, Michael J.
dc.date.accessioned2015-02-12T19:58:18Z
dc.date.available2015-02-12T19:58:18Z
dc.date.issued2014-05
dc.date.submitted2014-06
dc.identifier.issn0003-6951
dc.identifier.issn1077-3118
dc.identifier.urihttp://hdl.handle.net/1721.1/94508
dc.description.abstractHelium implantation from transmutation reactions is a major cause of embrittlement and dimensional instability of structural components in nuclear energy systems. Development of novel materials with improved radiation resistance, which is of the utmost importance for progress in nuclear energy, requires guidelines to arrive at favorable parameters more efficiently. Here, we present a methodology that can be used for the design of radiation tolerant materials. We used synchrotron X-ray reflectivity to nondestructively study radiation effects at buried interfaces and measure swelling induced by He implantation in Cu/Nb multilayers. The results, supported by transmission electron microscopy, show a direct correlation between reduced swelling in nanoscale multilayers and increased interface area per unit volume, consistent with helium storage in Cu/Nb interfaces in forms that minimize dimensional changes. In addition, for Cu/Nb layers, a linear relationship is demonstrated between the measured depth-dependent swelling and implanted He density from simulations, making the reflectivity technique a powerful tool for heuristic material design.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences (Energy Frontiers Research Center. Award 2008LANL1026)en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Grant DE-AC02-98CH10886)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4883481en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Demkowicz via Angie Locknaren_US
dc.titleDesign of radiation resistant metallic multilayers for advanced nuclear systemsen_US
dc.typeArticleen_US
dc.identifier.citationZhernenkov, Mikhail, Simerjeet Gill, Vesna Stanic, Elaine DiMasi, Kim Kisslinger, J. Kevin Baldwin, Amit Misra, M. J. Demkowicz, and Lynne Ecker. “Design of Radiation Resistant Metallic Multilayers for Advanced Nuclear Systems.” Appl. Phys. Lett. 104, no. 24 (June 16, 2014): 241906. © 2014 AIP Publishing LLCen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.approverDemkowicz, Michael J.en_US
dc.contributor.mitauthorDemkowicz, Michael J.en_US
dc.relation.journalApplied Physics Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsZhernenkov, Mikhail; Gill, Simerjeet; Stanic, Vesna; DiMasi, Elaine; Kisslinger, Kim; Baldwin, J. Kevin; Misra, Amit; Demkowicz, M. J.; Ecker, Lynneen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3949-0441
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record