Show simple item record

dc.contributor.authorFang, Cheng
dc.contributor.authorYu, Peng
dc.contributor.authorWilliams, Brian Charles
dc.date.accessioned2015-02-13T16:22:49Z
dc.date.available2015-02-13T16:22:49Z
dc.date.issued2014-07
dc.identifier.issn2154-8080
dc.identifier.urihttp://hdl.handle.net/1721.1/94526
dc.description.abstractScheduling under uncertainty is essential to many autonomous systems and logistics tasks. Probabilistic methods for solving temporal problems exist which quantify and attempt to minimize the probability of schedule failure. These methods are overly conservative, resulting in a loss in schedule utility. Chance constrained formalism address over-conservatism by imposing bounds on risk, while maximizing utility subject to these risk bounds. In this paper we present the probabilistic Simple Temporal Network (pSTN), a probabilistic formalism for representing temporal problems with bounded risk and a utility over event timing. We introduce a constrained optimisation algorithm for pSTNs that achieves compactness and efficiency through a problem encoding in terms of a parameterised STNU and its reformulation as a parameterised STN. We demonstrate through a car sharing application that our chance-constrained approach runs in the same time as the previous probabilistic approach, yields solutions with utility improvements of at least 5% over previous arts, while guaranteeing operation within the specified risk bound.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant No. IIS-1017992)en_US
dc.language.isoen_US
dc.publisherAssociation for the Advancement of Artificial Intelligence (AAAI)en_US
dc.relation.isversionofhttp://www.aaai.org/Conferences/AAAI/2014/aaai14accepts.phpen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceCheng Fangen_US
dc.titleChance-Constrained Probabilistic Simple Temporal Problemsen_US
dc.typeArticleen_US
dc.identifier.citationFang, Cheng, Peng Yu, and Brian C. Williams. "Chance-Constrained Probabilistic Simple Temporal Problems." in The Twenty-Sixth Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-14), July 29–31, 2014, Québec City, Québec, Canada.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorFang, Chengen_US
dc.contributor.mitauthorYu, Pengen_US
dc.contributor.mitauthorWilliams, Brian Charlesen_US
dc.relation.journalProceedings of the Conference on Innovative Applications of Artificial Intelligence (IAAI 2014)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsFang, Cheng; Yu, Peng; Williams, Brian C.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6995-7690
dc.identifier.orcidhttps://orcid.org/0000-0002-1057-3940
dc.identifier.orcidhttps://orcid.org/0000-0001-7016-9803
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record