MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A STRONGLY HEATED NEUTRON STAR IN THE TRANSIENT Z SOURCE MAXI J0556-332

Author(s)
Homan, Jeroen; Fridriksson, Joel K.; Wijnands, Rudy; Cackett, E. M.; Degenaar, N.; Linares, Manuel Alegret; Lin, Dacheng; Remillard, Ronald A; ... Show more Show less
Thumbnail
DownloadHoman-2014-A STRONGLY HEATED NE.pdf (610.1Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ~16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M [subscript ☉]. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ~500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT[∞ over eff] = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (~200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT[∞ over eff] = 190-336 eV) and a shorter e-folding time (~160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.
Date issued
2014-10
URI
http://hdl.handle.net/1721.1/94549
Department
MIT Kavli Institute for Astrophysics and Space Research
Journal
The Astrophysical Journal
Publisher
IOP Publishing
Citation
Homan, Jeroen, Joel K. Fridriksson, Rudy Wijnands, Edward M. Cackett, Nathalie Degenaar, Manuel Linares, Dacheng Lin, and Ronald A. Remillard. “A STRONGLY HEATED NEUTRON STAR IN THE TRANSIENT Z SOURCE MAXI J0556-332.” The Astrophysical Journal 795, no. 2 (October 22, 2014): 131. © 2014 The American Astronomical Society
Version: Final published version
ISSN
1538-4357
0004-637X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.