Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data
Author(s)
Taylor, Frank E.
DownloadThe-2014-Electron and photon.pdf (2.820Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb [superscript −1] of LHC proton–proton collision data taken at centre-of-mass energies of √s = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05 % in most of the detector acceptance, rising to 0.2 % in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1 % for electrons with a transverse energy of 10 GeV, and is on average 0.3 % for photons. The detector resolution is determined with a relative inaccuracy of less than 10 % for electrons and photons up to 60 GeV transverse energy, rising to 40 % for transverse energies above 500 GeV.
Date issued
2014-10Department
Massachusetts Institute of Technology. Department of PhysicsJournal
European Physical Journal C: Particles and Fields
Publisher
Springer-Verlag
Citation
Aad, G., B. Abbott, J. Abdallah, S. Abdel Khalek, O. Abdinov, R. Aben, B. Abi, et al. “Electron and Photon Energy Calibration with the ATLAS Detector Using LHC Run 1 Data.” Eur. Phys. J. C 74, no. 10 (October 2014).
Version: Final published version
ISSN
1434-6044
1434-6052