Show simple item record

dc.contributor.authorTan, Cheston
dc.contributor.authorSinger, Jedediah M.
dc.contributor.authorSerre, Thomas
dc.contributor.authorSheinberg, David
dc.contributor.authorPoggio, Tomaso A.
dc.date.accessioned2015-02-18T20:06:37Z
dc.date.available2015-02-18T20:06:37Z
dc.date.issued2013-12
dc.identifier.issn1049-5258
dc.identifier.urihttp://hdl.handle.net/1721.1/94612
dc.description.abstractThe macaque Superior Temporal Sulcus (STS) is a brain area that receives and integrates inputs from both the ventral and dorsal visual processing streams (thought to specialize in form and motion processing respectively). For the processing of articulated actions, prior work has shown that even a small population of STS neurons contains sufficient information for the decoding of actor invariant to action, action invariant to actor, as well as the specific conjunction of actor and action. This paper addresses two questions. First, what are the invariance properties of individual neural representations (rather than the population representation) in STS? Second, what are the neural encoding mechanisms that can produce such individual neural representations from streams of pixel images? We find that a baseline model, one that simply computes a linear weighted sum of ventral and dorsal responses to short action “snippets”, produces surprisingly good fits to the neural data. Interestingly, even using inputs from a single stream, both actor-invariance and action-invariance can be produced simply by having different linear weights.en_US
dc.language.isoen_US
dc.publisherNeural Information Processing Systems Foundation, Inc.en_US
dc.relation.isversionofhttp://papers.nips.cc/paper/5052-neural-representation-of-action-sequences-how-far-can-a-simple-snippet-matching-model-take-usen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePoggio via Courtney Crummetten_US
dc.titleNeural representation of action sequences: how far can a simple snippet-matching model take us?en_US
dc.typeArticleen_US
dc.identifier.citationTan, Cheston, Jedediah M. Singer, Thomas Serre, David Sheinberg and Tomaso Poggio. "Neural representation of action sequences: how far can a simple snippet-matching model take us?" Advances in neural information processing systems 26 (NIPS 2013), Lake Tahoe, Nevada, United States, December 5-10, 2013.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.approverPoggio, Tomaso A.en_US
dc.contributor.mitauthorPoggio, Tomaso A.en_US
dc.relation.journalAdvances in Neural Information Processing Systems 26 (NIPS 2013)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsTan, Cheston; Singer, Jedediah M.; Serre, Thomas; Sheinberg, David; Poggio, Tomaso A.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3944-0455
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record