High Frequency Dynamic Nuclear Polarization
Author(s)
Ni, Qing Zhe; Daviso, Eugenio; Markhasin, Evgeny; Herzfeld, Judith; Griffin, Robert Guy; Temkin, Richard J; Can, Thach V; Swager, Timothy M; Jawla, Sudheer K.; ... Show more Show less
DownloadGriffin_High frequency.pdf (2.121Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
During the three decades 1980–2010, magic angle spinning (MAS) NMR developed into the method of choice to examine many chemical, physical, and biological problems. In particular, a variety of dipolar recoupling methods to measure distances and torsion angles can now constrain molecular structures to high resolution. However, applications are often limited by the low sensitivity of the experiments, due in large part to the necessity of observing spectra of low-γ nuclei such as the I = [1 over 2] species [superscript 13]C or [superscript 15]N. The difficulty is still greater when quadrupolar nuclei, such as [superscript 17]O or [superscript 27]Al, are involved. This problem has stimulated efforts to increase the sensitivity of MAS experiments. A particularly powerful approach is dynamic nuclear polarization (DNP) which takes advantage of the higher equilibrium polarization of electrons (which conventionally manifests in the great sensitivity advantage of EPR over NMR). In DNP, the sample is doped with a stable paramagnetic polarizing agent and irradiated with microwaves to transfer the high polarization in the electron spin reservoir to the nuclei of interest. The idea was first explored by Overhauser and Slichter in 1953. However, these experiments were carried out on static samples, at magnetic fields that are low by current standards. To be implemented in contemporary MAS NMR experiments, DNP requires microwave sources operating in the subterahertz regime, roughly 150–660 GHz, and cryogenic MAS probes. In addition, improvements were required in the polarizing agents, because the high concentrations of conventional radicals that are required to produce significant enhancements compromise spectral resolution.
In the last two decades, scientific and technical advances have addressed these problems and brought DNP to the point where it is achieving wide applicability. These advances include the development of high frequency gyrotron microwave sources operating in the subterahertz frequency range. In addition, low temperature MAS probes were developed that permit in situ microwave irradiation of the samples. And, finally, biradical polarizing agents were developed that increased the efficiency of DNP experiments by factors of ~4 at considerably lower paramagnet concentrations. Collectively, these developments have made it possible to apply DNP on a routine basis to a number of different scientific endeavors, most prominently in the biological and material sciences. This Account reviews these developments, including the primary mechanisms used to transfer polarization in high frequency DNP, and the current choice of microwave sources and biradical polarizing agents. In addition, we illustrate the utility of the technique with a description of applications to membrane and amyloid proteins that emphasizes the unique structural information that is available in these two cases.
Date issued
2013-04Department
Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Plasma Science and Fusion Center; Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology)Journal
Accounts of Chemical Research
Publisher
American Chemical Society (ACS)
Citation
Ni, Qing Zhe, Eugenio Daviso, Thach V. Can, Evgeny Markhasin, Sudheer K. Jawla, Timothy M. Swager, Richard J. Temkin, Judith Herzfeld, and Robert G. Griffin. “High Frequency Dynamic Nuclear Polarization.” Accounts of Chemical Research 46, no. 9 (September 17, 2013): 1933–1941.
Version: Author's final manuscript
ISSN
0001-4842
1520-4898