MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Secondary Structure in the Core of Amyloid Fibrils Formed from Human β [subscript 2] m and Its Truncated Variant ΔN6

Author(s)
Su, Yongchao; Sarell, Claire J.; Eddy, Matthew Thomas; Debelouchina, Galia Tzvetanova; Andreas, Loren; Pashley, Clare L.; Radford, Sheena E.; Griffin, Robert Guy; ... Show more Show less
Thumbnail
DownloadGriffin_Secondary structure.pdf (5.466Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Amyloid fibrils formed from initially soluble proteins with diverse sequences are associated with an array of human diseases. In the human disorder, dialysis-related amyloidosis (DRA), fibrils contain two major constituents, full-length human β[subscript 2]-microglobulin (hβ2m) and a truncation variant, ΔN6 which lacks the N-terminal six amino acids. These fibrils are assembled from initially natively folded proteins with an all antiparallel β-stranded structure. Here, backbone conformations of wild-type hβ[subscript 2]m and ΔN6 in their amyloid forms have been determined using a combination of dilute isotopic labeling strategies and multidimensional magic angle spinning (MAS) NMR techniques at high magnetic fields, providing valuable structural information at the atomic-level about the fibril architecture. The secondary structures of both fibril types, determined by the assignment of ~80% of the backbone resonances of these 100- and 94-residue proteins, respectively, reveal substantial backbone rearrangement compared with the location of β-strands in their native immunoglobulin folds. The identification of seven β-strands in hβ[subscript 2]m fibrils indicates that approximately 70 residues are in a β-strand conformation in the fibril core. By contrast, nine β-strands comprise the fibrils formed from ΔN6, indicating a more extensive core. The precise location and length of β-strands in the two fibril forms also differ. The results indicate fibrils of ΔN6 and hβ[subscript 2]m have an extensive core architecture involving the majority of residues in the polypeptide sequence. The common elements of the backbone structure of the two proteins likely facilitates their ability to copolymerize during amyloid fibril assembly.
Date issued
2014-03
URI
http://hdl.handle.net/1721.1/94626
Department
Massachusetts Institute of Technology. Department of Chemistry; Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology)
Journal
Journal of the American Chemical Society
Publisher
American Chemical Society (ACS)
Citation
Su, Yongchao, Claire J. Sarell, Matthew T. Eddy, Galia T. Debelouchina, Loren B. Andreas, Clare L. Pashley, Sheena E. Radford, and Robert G. Griffin. “ Secondary Structure in the Core of Amyloid Fibrils Formed from Human β [subscript 2] m and Its Truncated Variant ΔN6 .” Journal of the American Chemical Society 136, no. 17 (April 30, 2014): 6313–6325.
Version: Final published version
ISSN
0002-7863
1520-5126

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.