MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bacillus Subtilis Class Ib Ribonucleotide Reductase: High Activity and Dynamic Subunit Interactions

Author(s)
Zhu, Xuling; Stubbe, JoAnne; Parker, Mackenzie James
Thumbnail
DownloadStubbe_Bacillus subtilis.pdf (1.093Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The class Ib ribonucleotide reductase (RNR) isolated from Bacillus subtilis was recently purified as a 1:1 ratio of NrdE (α) and NrdF (β) subunits and determined to have a dimanganic-tyrosyl radical (Mn[superscript III][subscript 2]-Y·) cofactor. The activity of this RNR and the one reconstituted from recombinantly expressed NrdE and reconstituted Mn[superscript III][subscript 2]-Y· NrdF using dithiothreitol as the reductant, however, was low (160 nmol min[superscript –1] mg[superscript –1]). The apparent tight affinity between the two subunits, distinct from all class Ia RNRs, suggested that B. subtilis RNR might be the protein that yields to the elusive X-ray crystallographic characterization of an “active” RNR complex. We now report our efforts to optimize the activity of B. subtilis RNR by (1) isolation of NrdF with a homogeneous cofactor, and (2) identification and purification of the endogenous reductant(s). Goal one was achieved using anion exchange chromatography to separate apo-/mismetalated-NrdFs from Mn[superscript III][subscript 2]-Y· NrdF, yielding enzyme containing 4 Mn and 1 Y·[over β [subscript 2]]. Goal two was achieved by cloning, expressing, and purifying TrxA (thioredoxin), YosR (a glutaredoxin-like thioredoxin), and TrxB (thioredoxin reductase). The success of both goals increased the specific activity to ~1250 nmol min[superscript –1] mg[superscript –1] using a 1:1 mixture of NrdE:Mn[superscript III][subscript 2]-Y· NrdF and either TrxA or YosR and TrxB. The quaternary structures of NrdE, NrdF, and NrdE:NrdF (1:1) were characterized by size exclusion chromatography and analytical ultracentrifugation. At physiological concentrations (~1 μM), NrdE is a monomer (α) and Mn[superscript III][subscript 2]-Y· NrdF is a dimer (β[subscript 2]). A 1:1 mixture of NrdE:NrdF, however, is composed of a complex mixture of structures in contrast to expectations.
Date issued
2014-01
URI
http://hdl.handle.net/1721.1/95673
Department
Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Chemistry
Journal
Biochemistry
Publisher
American Chemical Society (ACS)
Citation
Parker, Mackenzie J., Xuling Zhu, and JoAnne Stubbe. “ Bacillus Subtilis Class Ib Ribonucleotide Reductase: High Activity and Dynamic Subunit Interactions .” Biochemistry 53, no. 4 (February 4, 2014): 766–776.
Version: Author's final manuscript
ISSN
0006-2960
1520-4995

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.