Show simple item record

dc.contributor.authorTulloch, Ross
dc.contributor.authorFerrari, Raffaele
dc.contributor.authorJahn, Oliver
dc.contributor.authorKlocker, Andreas
dc.contributor.authorLedwell, James R.
dc.contributor.authorMessias, Marie-Jose
dc.contributor.authorSpeer, Kevin
dc.contributor.authorWatson, Andrew
dc.contributor.authorLaCasce, Joseph H., 1964-
dc.contributor.authorMarshall, John C
dc.date.accessioned2015-03-03T17:24:37Z
dc.date.available2015-03-03T17:24:37Z
dc.date.issued2014-12
dc.date.submitted2014-06
dc.identifier.issn0022-3670
dc.identifier.issn1520-0485
dc.identifier.urihttp://hdl.handle.net/1721.1/95751
dc.description.abstractThe first direct estimate of the rate at which geostrophic turbulence mixes tracers across the Antarctic Circumpolar Current is presented. The estimate is computed from the spreading of a tracer released upstream of Drake Passage as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The meridional eddy diffusivity, a measure of the rate at which the area of the tracer spreads along an isopycnal across the Antarctic Circumpolar Current, is 710 ± 260 m[superscript 2] s[superscript −1] at 1500-m depth. The estimate is based on an extrapolation of the tracer-based diffusivity using output from numerical tracers released in a one-twentieth of a degree model simulation of the circulation and turbulence in the Drake Passage region. The model is shown to reproduce the observed spreading rate of the DIMES tracer and suggests that the meridional eddy diffusivity is weak in the upper kilometer of the water column with values below 500 m[superscript 2] s[superscript −1] and peaks at the steering level, near 2 km, where the eddy phase speed is equal to the mean flow speed. These vertical variations are not captured by ocean models presently used for climate studies, but they significantly affect the ventilation of different water masses.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award OCE-1233832)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award OCE-1232962)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award OCE-1048926)en_US
dc.language.isoen_US
dc.publisherAmerican Meteorological Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1175/jpo-d-13-0120.1en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Meteorological Societyen_US
dc.titleDirect Estimate of Lateral Eddy Diffusivity Upstream of Drake Passageen_US
dc.typeArticleen_US
dc.identifier.citationTulloch, Ross, Raffaele Ferrari, Oliver Jahn, Andreas Klocker, Joseph LaCasce, James R. Ledwell, John Marshall, Marie-Jose Messias, Kevin Speer, and Andrew Watson. “Direct Estimate of Lateral Eddy Diffusivity Upstream of Drake Passage.” J. Phys. Oceanogr. 44, no. 10 (October 2014): 2593–2616. © 2014 American Meteorological Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.mitauthorFerrari, Raffaeleen_US
dc.contributor.mitauthorTulloch, Rossen_US
dc.contributor.mitauthorJahn, Oliveren_US
dc.contributor.mitauthorMarshall, John C.en_US
dc.relation.journalJournal of Physical Oceanographyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsTulloch, Ross; Ferrari, Raffaele; Jahn, Oliver; Klocker, Andreas; LaCasce, Joseph; Ledwell, James R.; Marshall, John; Messias, Marie-Jose; Speer, Kevin; Watson, Andrewen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3736-1956
dc.identifier.orcidhttps://orcid.org/0000-0001-9230-3591
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record