Show simple item record

dc.contributor.authorBunandar, Darius
dc.contributor.authorZhang, Zheshen
dc.contributor.authorShapiro, Jeffrey H.
dc.contributor.authorEnglund, Dirk Robert
dc.date.accessioned2015-03-03T19:29:15Z
dc.date.available2015-03-03T19:29:15Z
dc.date.issued2015-02
dc.date.submitted2014-11
dc.identifier.issn1050-2947
dc.identifier.issn1094-1622
dc.identifier.urihttp://hdl.handle.net/1721.1/95763
dc.description.abstractHigh-dimensional quantum key distribution (HD-QKD) allows two parties to generate multiple secure bits of information per detected photon. In this work, we show that decoy-state protocols can be practically implemented for HD-QKD using only one or two decoy states. HD-QKD with two decoy states, under realistic experimental constraints, can generate multiple secure bits per coincidence at distances over 200 km and at rates similar to those achieved by a protocol with infinite decoy states. Furthermore, HD-QKD with only one decoy state is practical at short distances, where it is almost as secure as a protocol with two decoy states. HD-QKD with only one or two decoy states can therefore be implemented to optimize the rate of secure quantum communications.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. Quiness Program (United States. Army Research Office. Award W31P4Q-12-1-0019)en_US
dc.description.sponsorshipMIT Bruno Rossi Graduate Fellowship in Astrophysicsen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevA.91.022336en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titlePractical high-dimensional quantum key distribution with decoy statesen_US
dc.typeArticleen_US
dc.identifier.citationBunandar, Darius, Zheshen Zhang, Jeffrey H. Shapiro, and Dirk R. Englund. “Practical High-Dimensional Quantum Key Distribution with Decoy States.” Phys. Rev. A 91, no. 2 (February 2015). © 2015 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorBunandar, Dariusen_US
dc.contributor.mitauthorZhang, Zheshenen_US
dc.contributor.mitauthorShapiro, Jeffrey H.en_US
dc.contributor.mitauthorEnglund, Dirk Roberten_US
dc.relation.journalPhysical Review Aen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2015-02-27T23:00:10Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsBunandar, Darius; Zhang, Zheshen; Shapiro, Jeffrey H.; Englund, Dirk R.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6094-5861
dc.identifier.orcidhttps://orcid.org/0000-0002-8668-8162
dc.identifier.orcidhttps://orcid.org/0000-0002-8218-5656
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record