Show simple item record

dc.contributor.authorCheng, Allen A.
dc.contributor.authorDing, Huiming
dc.contributor.authorLu, Timothy K.
dc.date.accessioned2015-03-03T19:29:59Z
dc.date.available2015-03-03T19:29:59Z
dc.date.issued2014-08
dc.date.submitted2014-01
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/95764
dc.description.abstractNew therapeutic strategies are needed to treat infections caused by drug-resistant bacteria, which constitute a major growing threat to human health. Here, we use a high-throughput technology to identify combinatorial genetic perturbations that can enhance the killing of drug-resistant bacteria with antibiotic treatment. This strategy, Combinatorial Genetics En Masse (CombiGEM), enables the rapid generation of high-order barcoded combinations of genetic elements for high-throughput multiplexed characterization based on next-generation sequencing. We created ~34,000 pairwise combinations of Escherichia coli transcription factor (TF) overexpression constructs. Using Illumina sequencing, we identified diverse perturbations in antibiotic-resistance phenotypes against carbapenem-resistant Enterobacteriaceae. Specifically, we found multiple TF combinations that potentiated antibiotic killing by up to 10[superscript 6]-fold and delivered these combinations via phagemids to increase the killing of highly drug-resistant E. coli harboring New Delhi metallo-beta-lactamase-1. Moreover, we constructed libraries of three-wise combinations of transcription factors with >4 million unique members and demonstrated that these could be tracked via next-generation sequencing. We envision that CombiGEM could be extended to other model organisms, disease models, and phenotypes, where it could accelerate massively parallel combinatorial genetics studies for a broad range of biomedical and biotechnology applications, including the treatment of antibiotic-resistant infections.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (New Innovator Award DP2 OD008435)en_US
dc.description.sponsorshipUnited States. Office of Naval Researchen_US
dc.description.sponsorshipEllison Medical Foundation (New Scholar in Aging Award)en_US
dc.description.sponsorshipHenry L. and Grace Doherty Charitable Foundationen_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1400093111en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceNational Academy of Sciences (U.S.)en_US
dc.titleEnhanced killing of antibiotic-resistant bacteria enabled by massively parallel combinatorial geneticsen_US
dc.typeArticleen_US
dc.identifier.citationCheng, A. A., H. Ding, and T. K. Lu. “Enhanced Killing of Antibiotic-Resistant Bacteria Enabled by Massively Parallel Combinatorial Genetics.” Proceedings of the National Academy of Sciences 111, no. 34 (August 11, 2014): 12462–12467.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Synthetic Biology Centeren_US
dc.contributor.mitauthorDing, Huimingen_US
dc.contributor.mitauthorLu, Timothy K.en_US
dc.contributor.mitauthorCheng, Allen A.en_US
dc.relation.journalProceedings of the National Academy of Sciences of the United States of Americaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCheng, Allen A.; Ding, Huiming; Lu, Timothy K.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9999-6690
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record