MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A robust nanoscale experimental quantification of fracture energy in a bilayer material system

Author(s)
Broderick, Kurt A.; Buehler, Markus J.; Buyukozturk, Oral; Lau, Denvid
Thumbnail
DownloadLau-2014-A robust nanoscale e.pdf (1.185Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Accurate measurement of interfacial properties is critical any time two materials are bonded—in composites, tooth crowns, or when biomaterials are attached to the human body. Yet, in spite of this importance, reliable methods to measure interfacial properties between dissimilar materials remain elusive. Here we present an experimental approach to quantify the interfacial fracture energy Γ[subscript i] that also provides unique mechanistic insight into the interfacial debonding mechanism at the nanoscale. This approach involves deposition of an additional chromium layer (superlayer) onto a bonded system, where interface debonding is initiated by the residual tensile stress in the superlayer, and where the interface can be separated in a controlled manner and captured in situ. Contrary to earlier methods, our approach allows the entire bonded system to remain in an elastic range during the debonding process, such that Γ[subscript i] can be measured accurately. We validate the method by showing that moisture has a degrading effect on the bonding between epoxy and silica, a technologically important interface. Combining in situ through scanning electron microscope images with molecular simulation, we find that the interfacial debonding mechanism is hierarchical in nature, which is initiated by the detachment of polymer chains, and that the three-dimensional covalent network of the epoxy-based polymer may directly influence water accumulation, leading to the reduction of Γ[subscript i] under presence of moisture. The results may enable us to design more durable concrete composites that could be used to innovate transportation systems, create more durable buildings and bridges, and build resilient infrastructure.
Date issued
2014-08
URI
http://hdl.handle.net/1721.1/95767
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Microsystems Technology Laboratories
Journal
Proceedings of the National Academy of Sciences of the United States of America
Publisher
National Academy of Sciences (U.S.)
Citation
Lau, D., K. Broderick, M. J. Buehler, and O. Buyukozturk. “A Robust Nanoscale Experimental Quantification of Fracture Energy in a Bilayer Material System.” Proceedings of the National Academy of Sciences 111, no. 33 (August 5, 2014): 11990–11995.
Version: Final published version
ISSN
0027-8424
1091-6490

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.