MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

FIRST INTERFEROMETRIC IMAGES OF THE 36 GHz METHANOL MASERS IN THE DR21 COMPLEX

Author(s)
Fish, Vincent L.; Muehlbrad, Talitha C.; Pratap, Preethi; Sjouwerman, Loránt O.; Strelnitski, Vladimir; Pihlström, Ylva M.; Bourke, Tyler L.; ... Show more Show less
Thumbnail
DownloadFish-2011-FIRST INTERFEROMETRI.pdf (333.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Class I methanol masers are believed to be produced in the shock-excited environment around star-forming regions. Many authors have argued that the appearance of various subsets of class I masers may be indicative of specific evolutionary stages of star formation or excitation conditions. Until recently, however, no major interferometer was capable of imaging the important 36 GHz transition. We report on Expanded Very Large Array observations of the 36 GHz methanol masers and Submillimeter Array observations of the 229 GHz methanol masers in DR21(OH), DR21N, and DR21W. The distribution of 36 GHz masers in the outflow of DR21(OH) is similar to that of the other class I methanol transitions, with numerous multitransition spatial overlaps. At the site of the main continuum source in DR21(OH), class I masers at 36 and 229 GHz are found in virtual overlap with class II 6.7 GHz masers. To the south of the outflow, the 36 GHz masers are scattered over a large region but usually do not appear coincident with 44 GHz masers. In DR21W, we detect an "S-curve" signature in Stokes V that implies a large value of the magnetic field strength if interpreted as due to Zeeman splitting, suggesting either that class I masers may exist at higher densities than previously believed or that the direct Zeeman interpretation of S-curve Stokes V profiles in class I masers may be incorrect. We find a diverse variety of different maser phenomena in these sources, suggestive of differing physical conditions among them.
Date issued
2011-03
URI
http://hdl.handle.net/1721.1/95872
Department
Haystack Observatory
Journal
Astrophysical Journal
Publisher
Institute of Physics/American Astronomical Society
Citation
Fish, Vincent L., Talitha C. Muehlbrad, Preethi Pratap, Loránt O. Sjouwerman, Vladimir Strelnitski, Ylva M. Pihlström, and Tyler L. Bourke. “FIRST INTERFEROMETRIC IMAGES OF THE 36 GHz METHANOL MASERS IN THE DR21 COMPLEX.” The Astrophysical Journal 729, no. 1 (February 4, 2011): 14. © 2011 American Astronomical Society.
Version: Final published version
ISSN
0004-637X
1538-4357

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.