Show simple item record

dc.contributor.authorLiu, Bo-Yu
dc.contributor.authorWang, Jian
dc.contributor.authorLi, Bin
dc.contributor.authorLu, Lu
dc.contributor.authorZhang, Xi-Yan
dc.contributor.authorShan, Zhi-Wei
dc.contributor.authorLi, Ju
dc.contributor.authorJia, Chun-Lin
dc.contributor.authorMa, Evan
dc.contributor.authorSun, Jun, 1975-
dc.date.accessioned2015-03-05T17:30:52Z
dc.date.available2015-03-05T17:30:52Z
dc.date.issued2014-02
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/95881
dc.description.abstractTwinning on the {10[bar over 1]2} plane is a common mode of plastic deformation for hexagonal-close-packed metals. Here we report, by monitoring the deformation of submicron-sized single-crystal magnesium compressed normal to its prismatic plane with transmission electron microscopy, the reorientation of the parent lattice to a ‘twin’ lattice, producing an orientational relationship akin to that of the conventional {10[bar over 1]2} twinning, but without a crystallographic mirror plane, and giving plastic strain that is not simple shear. Aberration-corrected transmission electron microscopy observations reveal that the boundary between the parent lattice and the ‘twin’ lattice is composed predominantly of semicoherent basal/prismatic interfaces instead of the {10[bar over 1]2} twinning plane. The migration of this boundary is dominated by the movement of these interfaces undergoing basal/prismatic transformation via local rearrangements of atoms. This newly discovered deformation mode by boundary motion mimics conventional deformation twinning but is distinct from the latter and, as such, broadens the known mechanisms of plasticity.en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (50925104)en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (11132006)en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (51231005)en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (51231003)en_US
dc.description.sponsorshipNational Natural Science Foundation (China). 973 Program (2010CB631003)en_US
dc.description.sponsorshipNational 111 Project of China (B06025)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms4297en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en_US
dc.sourceNatureen_US
dc.titleTwinning-like lattice reorientation without a crystallographic twinning planeen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Bo-Yu, Jian Wang, Bin Li, Lu Lu, Xi-Yan Zhang, Zhi-Wei Shan, Ju Li, Chun-Lin Jia, Jun Sun, and Evan Ma. “Twinning-Like Lattice Reorientation Without a Crystallographic Twinning Plane.” Nature Communications 5 (February 13, 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorLi, Juen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLiu, Bo-Yu; Wang, Jian; Li, Bin; Lu, Lu; Zhang, Xi-Yan; Shan, Zhi-Wei; Li, Ju; Jia, Chun-Lin; Sun, Jun; Ma, Evanen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7841-8058
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record