MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Elastic strain engineering for unprecedented materials properties

Author(s)
Li, Ju; Shan, Zhiwei; Ma, Evan
Thumbnail
DownloadLi_Elastic strain.pdf (6.169Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
“Smaller is stronger.” Nanostructured materials such as thin films, nanowires, nanoparticles, bulk nanocomposites, and atomic sheets can withstand non-hydrostatic (e.g., tensile or shear) stresses up to a significant fraction of their ideal strength without inelastic relaxation by plasticity or fracture. Large elastic strains, up to ∼10%, can be generated by epitaxy or by external loading on small-volume or bulk-scale nanomaterials and can be spatially homogeneous or inhomogeneous. This leads to new possibilities for tuning the physical and chemical properties of a material, such as electronic, optical, magnetic, phononic, and catalytic properties, by varying the six-dimensional elastic strain as continuous variables. By controlling the elastic strain field statically or dynamically, a much larger parameter space opens up for optimizing the functional properties of materials, which gives new meaning to Richard Feynman’s 1959 statement, “there’s plenty of room at the bottom.”
Date issued
2014-02
URI
http://hdl.handle.net/1721.1/95883
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Journal
MRS Bulletin
Publisher
Cambridge University Press (Materials Research Society)
Citation
Li, Ju, Zhiwei Shan, and Evan Ma. “Elastic Strain Engineering for Unprecedented Materials Properties.” MRS Bulletin 39, no. 02 (February 2014): 108–114. © 2014 Materials Research Society
Version: Final published version
ISSN
0883-7694
1938-1425

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.