Show simple item record

dc.contributor.authorWhite, A. E.
dc.contributor.authorTheiler, C.
dc.contributor.authorChurchill, Randy Michael
dc.contributor.authorSnyder, P. B.
dc.contributor.authorOsborne, Thomas H.
dc.contributor.authorDominguez, A.
dc.contributor.authorCziegler, Istvan
dc.contributor.authorWalk Jr, John R.
dc.contributor.authorHughes, Jerry W., Jr.
dc.contributor.authorHubbard, Amanda E.
dc.contributor.authorTerry, James L.
dc.contributor.authorWhyte, Dennis G.
dc.contributor.authorBaek, Seung Gyou
dc.contributor.authorReinke, Matthew Logan
dc.contributor.authorRice, John E.
dc.date.accessioned2015-03-05T20:28:24Z
dc.date.available2015-03-05T20:28:24Z
dc.date.issued2014-04
dc.date.submitted2013-12
dc.identifier.issn1070-664X
dc.identifier.issn1089-7674
dc.identifier.urihttp://hdl.handle.net/1721.1/95894
dc.description.abstractI-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P[subscript net] [over [bar over n][subscript e]], and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P[subscript net] [over [bar over n][subscript e]]. This is consistent with targets for increased performance in I-mode, elevating pedestal β [subscript p] and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs, consistent with the observed suppression of large ELMs in I-mode.en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Agreement DE-FC02-99ER54512)en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Agreement DE-FG02-99ER54309)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4872220en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleEdge-localized mode avoidance and pedestal structure in I-mode plasmasen_US
dc.typeArticleen_US
dc.identifier.citationWalk, J. R., J. W. Hughes, A. E. Hubbard, J. L. Terry, D. G. Whyte, A. E. White, S. G. Baek, et al. “Edge-Localized Mode Avoidance and Pedestal Structure in I-Mode Plasmas.” Phys. Plasmas 21, no. 5 (May 2014): 056103.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.contributor.mitauthorWalk Jr, John R.en_US
dc.contributor.mitauthorHughes, Jerry W., Jr.en_US
dc.contributor.mitauthorHubbard, Amanda E.en_US
dc.contributor.mitauthorTerry, James L.en_US
dc.contributor.mitauthorWhyte, Dennis G.en_US
dc.contributor.mitauthorWhite, A. E.en_US
dc.contributor.mitauthorBaek, Seung Gyouen_US
dc.contributor.mitauthorReinke, Matthew Loganen_US
dc.contributor.mitauthorRice, John E.en_US
dc.contributor.mitauthorTheiler, C.en_US
dc.contributor.mitauthorChurchill, Randy Michaelen_US
dc.relation.journalPhysics of Plasmasen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsWalk, J. R.; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E.; Snyder, P. B.; Osborne, T.; Dominguez, A; Cziegler, I.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8319-5971
dc.identifier.orcidhttps://orcid.org/0000-0002-9001-5606
dc.identifier.orcidhttps://orcid.org/0000-0001-8029-3525
dc.identifier.orcidhttps://orcid.org/0000-0003-2951-9749
dc.identifier.orcidhttps://orcid.org/0000-0001-8324-4227
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record