Show simple item record

dc.contributor.authorYamins, Daniel L. K.
dc.contributor.authorHong, Ha
dc.contributor.authorCadieu, Charles
dc.contributor.authorDiCarlo, James
dc.date.accessioned2015-03-06T19:34:13Z
dc.date.available2015-03-06T19:34:13Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/1721.1/95910
dc.description.abstractHumans recognize visually-presented objects rapidly and accurately. To understand this ability, we seek to construct models of the ventral stream, the series of cortical areas thought to subserve object recognition. One tool to assess the quality of a model of the ventral stream is the Representational Dissimilarity Matrix (RDM), which uses a set of visual stimuli and measures the distances produced in either the brain (i.e. fMRI voxel responses, neural firing rates) or in models (fea-ures). Previous work has shown that all known models of the ventral stream fail to capture the RDM pattern observed in either IT cortex, the highest ventral area, or in the human ventral stream. In this work, we construct models of the ventral stream using a novel optimization procedure for category-level object recognition problems, and produce RDMs resembling both macaque IT and human ventral stream. The model, while novel in the optimization procedure, further develops a long-standing functional hypothesis that the ventral visual stream is a hierarchically arranged series of processing stages optimized for visual object recognition.en_US
dc.language.isoen_US
dc.publisherNeural Information Processing Systems Foundationen_US
dc.relation.isversionofhttp://papers.nips.cc/paper/4991-hierarchical-modular-optimization-of-convolutional-networks-achieves-representations-similar-to-macaque-it-and-human-ventral-streamen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceDiCarlo via Courtney Crummetten_US
dc.titleHierarchical Modular Optimization of Convolutional Networks Achieves Representations Similar to Macaque IT and Human Ventral Streamen_US
dc.typeArticleen_US
dc.identifier.citationYamins, Daniel, Ha Hong, Charles Cadieu, and James J. Dicarlo. "Hierarchical Modular Optimization of Convolutional Networks Achieves Representations Similar to Macaque IT and Human Ventral Stream." Advances in Neural Information Processing Systems (NIPS) 26 (2013).en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.approverDiCarlo, Jamesen_US
dc.contributor.mitauthorYamins, Daniel L. K.en_US
dc.contributor.mitauthorHong, Haen_US
dc.contributor.mitauthorCadieu, Charlesen_US
dc.contributor.mitauthorDiCarlo, Jamesen_US
dc.relation.journalAdvances in Neural Information Processing Systems (NIPS) 26en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsYamins, Daniel; Hong, Ha; Cadieu, Charles; Dicarlo, James J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1592-5896
dc.identifier.orcidhttps://orcid.org/0000-0001-7779-2219
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record